Electron Polarization Measurement with A Fabry-Perot Cavity at HERA

E. Barrelet, V. Brisson, M. Jacquet-Lemire, A. Reboux, C. Pascaud, Z. Zhang, F. Zomer, and HERA POL2000 Group

WHAT? Overview of HERA machine and its polarimeters

- Why? Necessities of having fast & precise P_e measurement
- HOW? Principle of the polarization measurement
 New polarimeter with a Fabry-Perot Cavity
 Comparison of the new polarimeter with the existing ones
 And Summary and outlook

Overview of HERA Machine and its Polarimeters Sokolov-Ternov Effect Spin Rotator Natural transverse polarization Longitudinal polarization Measured with Spin Laser HERMES a Longitudinal Rotator (exists) LPOL Polarimeter New LPOL Spin Rotator (new) H1 HERA RING Spin Rotator (new) ZEUS Typical Pe~0.55 Rise-time ~22min Laser Measured with Longitudinal P. @ HERMES a Transverse electrons since 1995 TPOL Polarimeter @ H1 & ZEUS HERA B after upgrade

Zhiqing Zhang LAL, Orsay

Necessities of having Fast & Precise P_e Measurement The Physics Consideration

Precision Measurements (QCD):

Neutral Current (NC) and Charged Current (CC) cross-sections very sensitive to P_e at high Q^2 \rightarrow Parton densities at large x

Electroweak Physics:

 $NC \rightarrow qZ$ couplings: v_q , a_q $CC \rightarrow W$ boson (propagator) mass

Physics Beyond Standard Model:

Right-handed CC interaction Enhanced sensitivity for searching for Leptoquarks, R_p violating SUSY

Zhiqing Zhang LAL, Orsay

Necessities of having Fast & Precise P_e Measurement Other considerations

p and e beam currents within a luminosity fill

 P_e varies ~10% and P_e changes from bunch to bunch (not shown)

Need fast feedback to optimize and maintain maximum P_e

Luminosity largest at the beginning of a fill

Need P_e as precise as lumi. and their correlations to properly analyze data

Zhiqing Zhang LAL, Orsay

Zhiqing Zhang LAL, Orsay

A Comparison of Different Polarimeters

	PL	e-y rate	γ rate (n _{γ})	(δP_e) _{stat}	$(\delta P_e)_{syst}$
<u>LPOL:</u>	33MW	0.1KHz pulse laser (1000 γ /pulse multi- γ mode i.e. 0.01 γ /bc (bc=bunch crossing)	1%/min (all bunches) 1%/(>30min) (single bunch)	~2%
TPOL:	10W (cw	10MHz cw laser v=continuous wa	0.01 γ/bc single-γ mode ve)	1-2%/min (all bunches)	~4% → <2% (upgrade)
New LPOL:	<mark>5kW</mark> ↑	10MHz cw laser	1 γ/bc few-γ mode	0.1%/6s (all bunches) 1%/min	per mill
Fabry-Perot Cavity 0.7W				(single bunch)	
				Expected precision	

Zhiqing Zhang LAL, Orsay

A High Gain Fabry-Perot Cavity S_v Use Fabry-Perot cavity to amplify laser power: (A proven technology at Jefferson Lab) Beam analysis photons HERA e beam vacuum electrons ~5 kW ~ 2 m ~0.7W Pockels Cell Laser NdYag ~0.7W Circularly Linearly polarized polarized rror photons photons mirror

All optical components are fixed rigidly on an optical table

Zhiqing Zhang LAL, Orsay

Photon Detection and Systematic Uncertainty of P_{e}

New LPOL (few-photon mode):

Compton and Bremsstrahlung edges clearly visible

Background determination and Calibration easy $(\delta P_e)_{syst}$: per mill level expected

Existing LPOL (multi-photon mode):

Up to 1000 γ produced per pulse Signal/background ratio improved > 5TeV measured in the detector! Calibration difficult Non-linearity → main syst. error

New polarimeter with a Fabry-Perot cavity:

High statistics precision: 0.1% every 6s (all bunches) 1% every minute (single bunch)

Per mill level

Fast and precise measurement of P_e :

Valuable feedback for HERA machine to achieve maximum polarization Necessary to fully exploit the physics potential at HERA after upgrade

Cavity prototype being tested at LAL, Orsay

Final set-up will be installed during the shutdown in spring 2002