<u>Measurements of the Diffractive Structure</u> Function $F_2^{D(3)}(eta,Q^2,x_{I\!\!P})$ at HERA

Paul Newman

Birmingham University

Representing the H1 and ZEUS Collaborations.

- Inclusive Diffraction at HERA.
- $\gamma^* p$ centre of mass energy dependence
- QCD structure of Diffraction
- Comparison with Colour Dipole Models

Diffraction at HERA

At HERA, diffractive $\gamma^{(\star)}p$ interactions can be studied \ldots

All five kinematic variables can be measured ...

... This talk concerned with large Q^2 , low |t|, Y = p

 $egin{aligned} x_{I\!\!P} &= rac{q.(p-p')}{q.p} = x_{(I\!\!P/p)} \ eta &= rac{Q^2}{q.(p-p')} = x_{(q/I\!\!P)} \ (x &= x_{I\!\!P}\,eta) \end{aligned}$

Diffraction of Virtual Photons, $\gamma^\star p o Xp$

Two complementary measurement techniques ...

- 1. Direct measurement of Leading Protons See talk of Florian Göbel
- 2. Require large rapidity gap separating p from XReconstruct kinematics from X

Data presented as a Diffractive Structure Function ...

 $F_2^{D(3)}(\beta, Q^2, x_{\mathbb{I}\!\!P}) = \frac{\beta Q^4}{4\pi\alpha^2 (1 - y + y^2/2)} \quad \frac{\mathrm{d}\sigma_{ep \to eXY}}{\mathrm{d}\beta \ \mathrm{d}Q^2 \ \mathrm{d}x_{\mathbb{I}\!\!P}}$

Factorisation Properties of $F_2^{D(3)}$

QCD Hard Scattering Factorisation for Diffractive DIS:-

(Trentadue, Veneziano, Berera, Soper, Collins ...) <u>Diffractive parton densities</u> $f(x_{I\!P}, t, x, Q^2)$ express proton parton probability distributions with intact final state proton at particular $x_{I\!P}, t \dots$

$$\sigma(\gamma^* p \to Xp) \sim \sum_i f_{i/p}(x_{I\!\!P}, t, x, Q^2) \otimes \hat{\sigma}_{\gamma^* i}(x, Q^2)$$

At fixed $x_{I\!\!P}$, t, $f(x_{I\!\!P}, t, x, Q^2)$ evolve with x, Q^2 according to DGLAP equations.

'Regge' Factorisation:-

Soft hadron phenomenology suggests a universal *pomeron* (IP) exchange can be introduced, with flux dependent only on x_{IP} , t (Donnachie, Landshoff, Ingelman, Schlein...)

'Regge' Fits to H1 1997 F_2^D Data

Test 'Regge' fac'n by fitting $x_{I\!P}$ dependence at fixed β , Q^2 . Data well described by exchange of two universal trajectories IP and IR (χ^2 /ndf = 0.95).

No evidence for variation of $\alpha_{\rm I\!P}(0)$ with $\beta, Q^2.$

Variation of Energy Dependence with Q^2

 $\alpha_{\rm I\!P}\left(0\right) = 1.173 \ \pm 0.018 \ {\rm (stat.)} \ \pm 0.017 \ {\rm (syst.)} \ ^{+0.063}_{-0.035} \ {\rm (model)}$

Error dominated by model dependence $0 < F_L^{D(3)} < F_2^{D(3)}$

Compatible results if data divided into two Q^2 ranges

Compare effective $\alpha_{\mathbb{IP}}(0)$ from F_2^D and F_2^D ...

 $x_{I\!\!P} F_2^D \sim A(\beta, Q^2) \ x^{2-2 \left< \alpha_{\rm I\!P} \left(t \right) \right>}$

 $F_2 \sim B(Q^2) \ x^{1-\alpha} \mathbb{P}^{(0)}$

 $lpha_{{\rm I\!P}}(0)$ grows with $Q^2 \rightarrow$ larger than soft IP at large Q^2

Growth of effective $\alpha_{\mathbb{IP}}(0)$ slower for diffractive than for inclusive cross section?

Energy dependences of diffractive and inclusive cross sections become similar at large Q^2

Energy Dependence of Diffractive to

Inclusive Ratio

ZEUS data on diffractive / inclusive ratio over wide Q^2 range.

$$\begin{split} \rho &= 0.24 \pm 0.07 \; (\text{stat}) \quad (0.27 \leq Q^2 \leq 0.58 \; \text{GeV}^2 \; \text{-} \; \text{Regge-like}) \\ \rho &= 0.00 \pm 0.03 \; (\text{stat}) \quad (Q^2 \geq 4 \; \text{GeV}^2 \; \text{-} \; \text{Not} \; \text{Regge-like}) \end{split}$$

Scaling Violations of F_2 and F_2^D

Compare scaling violations of F_2^D at $x=(x_{I\!\!P}\,\cdot\,\beta)$ with F_2 at x

When compared at the same $\underline{x} \dots$

 F_2^D shows similar Q^2 dependence to F_2 at low β .

At $\beta = 0.9$, F_2^D falls with Q^2 whereas F_2 continues to rise.

Different dynamics at work in diffractive processes!

e.g. Q^2 suppressed higher twist contributions (e.g. elastic VM production) present at high β

eta , Q^2 dependence of $F_2^{D(3)}$

 (β, Q^2) dependences of $F_2^{D(3)}$ at fixed $x_{I\!\!P}$ sensitive to diffractive parton densities.

Precision H1 measurements at 4 fixed $x_{I\!P}$ values.

Parameterise (u, d, s) singlet, gluon densities at $Q_0^2 = 2 \text{ GeV}^2$. Fit β , Q^2 dependence using DGLAP equations. Require y < 0.45 (F_L^D small) Require $\beta \le 0.9$, $M_X > 2 \text{ GeV}$ (higher twists small)

Regge motivated parameterisation of x_{IP} dependence.

Small meson contribution at large $x_{{\ensuremath{I\!P}}}$, small β

Fit incorporating QCD collinear factorisation and Regge factorisation describes data well.

Extracted parton densities dominated by large gluon distribution extending to high fractional momentum.

 β dependence relatively flat.

Rising scaling violations with $\ln Q^2$ up to large β

Require large gluon contribution in diffractive pdf's, extending to large fractional momenta.

Variations with $x_{\mathbb{I}P}$ well described by Regge $\mathbb{I}P$, $\mathbb{I}R$ flux factors.

No evidence for breakdown of Regge factorisation hypothesis.

Sub-leading exchange (IR) contribution negligible except at high x_{IP} , low β

Colour Dipole Models

 $\gamma^* \rightarrow q\bar{q}, q\bar{q}g$ well in advance of target ... Partonic fluctuations scatter elastically from proton.

Cross section for colour dipole to scatter elasttically from proton Simple relationships between σ_{tot} , σ_{el} and σ_{dif}

Describe diffraction beyond leading twist (high β ?)

Joint description of F_2 and F_2^D ...

Х

Different approaches to the dipole cross section ...

• Non-perturbative interaction with proton colour field

e.g. 'semi-classical' model (Buchmüller, Gehrmann, Hebecker)

Partonic - two gluon exchange

e.g. 'saturation' model (Golec-Biernat, Wüsthoff)

Colour Dipole Models

Non-perturbative

Partonic

General features of data well reproduced ...

Impressive given that models basically constrained by F_2 data! Partonic model - higher twist at high $\beta \rightarrow$ better description Inclusion of QCD evolution in partonic model does not help. Both models exceed data at low β , low Q^2 .

Comparison with ZEUS data ...

Good description for $Q^2 \ge 4 \text{ GeV}^2$ $q\bar{q}g$ photon fluctuation dominant for large $M_X \equiv \text{small }\beta$ Model not yet able to describe $Q^2 \le 1 \text{ GeV}^2$

Summary

- Copious HERA $F_2^{D(3)}$ data wide kinematic range, improving precision
- Effective $\alpha_{\mathbb{IP}}(0)$ larger than soft \mathbb{IP} at large Q^2
- No evidence for deviations from 'Regge' factorisation within large Q^2 data
- $\gamma^* p$ cms energy dependences of diffractive and total cross sections become similar at large Q^2
- (x, Q^2) dependence of F_2 and F_2^D similar except at largest $\beta \equiv$ smallest M_X
- (β, Q²) dependences require diffractive pdf's dominated by gluon density extending to large β
- Dipole models relating F^D₂ to F₂ give reasonable overall description of data - fine detail not yet correct