ZEUS Physics and Upgrade

A. Garfagnini II. Inst. f. Experimentalphysik Universitaet Hamburg

PRC 50, DESY, October 19-20. 2000

Data taking

Experimental range

Large area covered:

span 6 orders of magnitude in x and Q^2 .

High Q²: EW, new physics; low Q²: non perturbative regime.

Scaling violation of F₂

1) F_2 offset is $log_{10}(x)$ 2) fit F_2 for each x value to $A(x) + B(x)log_{10}Q^2 + C(x)(logQ^2)^2$ 3) $x \sim Q^2/(Q^2+W^2) \rightarrow x \sim Q^2$ for fixed W $W \rightarrow \gamma p$ CMS energy

The logarithmic Q² derivative of F₂

The changes in the F_2 dependence of F_2 (low x, low Q²) can be looked at with

$$\frac{\partial F_2}{\partial \ln_{10} Q^2} (x, Q^2) = B(x) + C(x) \log_{10} Q^2$$

(calculated for fixed x) At low Q² (B) $\frac{\partial F_2}{\partial \ln_{10} Q^2} (x, Q^2) \propto Q^2 \sigma_0$

(conservation of EM current $q_{\mu}W^{\omega\nu} = 0$)

Line: $\sigma_0^* Q^2$ with $\sigma_0 = 1.0$

The logarithmic Q^2 derivative of F_2

In the low x limit and LO (DGLAP):

(A)
$$\frac{\partial F_2}{\partial \ln_{10} Q^2} (x, Q^2) \propto x G(x, Q^2) \sim x^{-\lambda}$$

Line: $c^*x^{-0.5}$ with C = 0.025

6

F_2^c via semileptonic decay $c \rightarrow e \nu X (\mu \nu X)$

Directly sensitive to xG(x,Q²) New method:

- tracking (dE/dx) and CAL (E):
- Electron enriched: $E_{EMC}/E > 90\%$
- Hadron sample: $E_{EMC}/E_{CAL} < 40\%$
- Subtract statistically hadrons from electron enriched sample

Clear signal seen ! Difficult background: $\gamma \rightarrow e^+e^-$ (conversion) $\pi^0 \rightarrow e^+e^-\gamma$ (Dalitz decays)

F₂^c (cont'd)

ZEUS Preliminary 1996-97

- fast rise at low x (steeper with higher Q²);
- higher BR \rightarrow extension to higher Q^2
- gluon from scaling violation of F₂ (ZEUS) describes perfectly the data.

Study of parton behavior using prompt-γ + Jet

Events w/ hard γ s in final state \rightarrow sensitive to the quark densities in the proton.

9

Transverse momentum smearing of the partons due to gluon radiation increase with W $$_{\rm 10}$$

Dijet in Photoproduction

Study internal structure of jets and classify according to their size:

- "thick" jets expected from gluons;
- "thin" jets more likely from quarks.

Jets search w/ inclusive k_T algorithm. 0.2 < y < 0.85 and Q^2 < 1 GeV²

Dijet in Photoproduction (cont'd)

The $\cos\theta^*$ distribution sensitive to the parton dynamics:

- gluon exchange, $dN/dcos\theta^* \propto (1-|cos\theta^*|)^{-2}$;
- quark exchange, $dN/dcos\theta^* \propto (1-|\cos\theta^*|)^{-1}$

dσ/ dcosθ^{*} for M^{JJ} > 47 GeV for samples of 2 "thick" and 2 "thin" jets exhibit a different shape:

3-Jet production in Diffractive DIS

FPC extends M_X (and η) range.

Three jet events were observed at PETRA in the range $29 \le \sqrt{s} \le 36$ GeV

3-Jet production in Diffractive DIS

Factorize IP

pQCD inspired

Tuned to inclusive diffraction. pQCD inspired models dominated by jets aligned to γ -IP axis.

Gluon dominated Pomeron picture confirmed

ZEUS Preliminary

Leading Neutrons p_t distrib. in DIS

FNT installed in the FNC. Allows to measure the neutron p_t

У

 $x_L = E_n / E_{beam}$

Fit dN/dp_t² to a single exponential function (exp -b p_t²)

ZEUS PRELIMINARY 1999

Leading Neutrons (cont'd)

 P_{t} distribution (slope) sensitive to the nature of the exchanged object.

ZEUS PRELIMINARY 1999

Search for single top production

High p _t leptons	Electrons	Muons
	observed/expected	observed/expected
	(W)	(W)
Total 82 pb ⁻¹ preliminary	7 / 6.1±0.9 (1.9)	4 / 3.7±0.4 (0.8)

Limit at HERA obtained only for γ coupling,₁₇ and valid only for t-u FCNC.

Search for squark production in RPV SUSY

18

HERA as a charm factory ?

 $D^{*_{+}} \rightarrow D^{0}\pi_{s}^{+} \rightarrow K2\pi(K4\pi) + (C.C.);$

- 2 orbital excited states:
- D₁(2420)

• D_2^{*0} (2460) can decay in D* π . narrow (~ 20MeV) Spectroscopy of D mesons

Excited charm mesons

Fit D_1^0 and D_2^{*0} with Breit-Wigner folding in helicity spectra.

 $f(c \to D^{*^{+}}) \cdot B(D^{*^{+}} \to D^{*_{+}}\pi^{+}\pi^{-}) < 0.7\%$ (95% C.L.)

Q^2 dependence of $\sigma(e^{\pm} p \rightarrow e^{\pm} X)$

- Impressive agreement w/ SM;
- Z exchange contributes differently to σ(e⁺p) - σ(e⁻p).

High Q² region needs more (e⁻p and e⁺p data)

BMVD ladder production

Required: 30 Produced: 31 In production (spares): (4)

FMVD wheel assembly

Required: 4 Assembled: 1 To be asembled (spares): 3+(1)

MVD Status

Assembly MVD:

- support frames/tube ready
- laser alignment system installed
- 3D measurement of support points ladders/wheels done

In progress (now):

- install cabling for wheels
- cabling ladders
 followed by the installation of wheels and
 ladders in the upper half of the MVD.

ADC, Patch-box, Clock and Control, LV and HV under control

- ⇒ complete readout chain (with one full Si-barrel module) working in the lab;
- ⇒ extend system to one complete ladder (5 modules) coming next week (all parts available)

STT Status

Mechanics:

- module assembly in progress in DESY, MePHI, York/Toronto, Freiburg;
- Electronics:
- design and production of boards finished (assembly on going in Argonne)
 [2 sets of electronics boards @ DESY]

Test beam (DESY electrons 1-6 GeV):

 measurement successful: straw by straw efficiency ~ 97% (as expected)

Detector:

- 6m tagger: prototype (1/2) successfully tested;
- γ-CAL: final module ready and tested;
- spectrometer (ZEUS BPC): WLS replaced;

Mechanics:

- new dipole: at DESY;
- new exit windows: designs ready;
- support structures: being designed.

Electronics (common):

- •FEE prototypes tested;
- •Integrator + FADC boards at design stage;
- Memory board in production';
- •Trigger board in design stage
- DAQ+Slow Control: work in progress

6m tagger and γ -CAL performance tests done at DESY with test-beam electrons (1-6 GeV)

 γ -CAL + 4X₀ filter data/mc 5 GeV

ADC

ZEUS Summary

- Excellent data taking . ZEUS has collected in HERA Run I 116 pb⁻¹ (e⁺p), 17 pb⁻¹ (e⁻p). FPC, BPC, BPT and LPS will not take part in the next run.
- The full statistic sample starts to be used in several analyses allowing to perform precise QCD measurements and set competitive limits on physics beyond the Standard Model.
- Preparation for HERA Run II:
 - MVD, STT and LUMI Monitor approaching the installation phase.
 - Upgraded tracking system with improved resolution will open new physics channels.
 - Offline is ready for the high luminosity data.