PARTICLE PHYSICS

2000

NIVE AS

Nick Brook

University of Bristol

- Measurement of F₂
- BFKL dynamics
- Event Shapes

HERA Accelerator

 e^+/e^- beam - 27.5 GeV

Proton beam - 820/920 GeV

Luminosity available for physics (ZEUS):

Naïve Quark Parton Model (QPM)

where \sqrt{s} is the eP centre of mass energy

QCD Improved QPM

Leading order $O(\alpha_s)$ modifies QPM picture:

There are 2 contributions:

• QCD Compton - the quark radiates a gluon before or after being stuck by the virtual photon

• Boson Gluon Fusion - the virtual photon & a gluon inside the proton produce a quark-antiquark pair

HERA kinematic range

HERA extends the kinematic reach of previous DIS expt:

- Q^2 in range 10⁻¹ to 10⁵ GeV²
- x down to 10⁻⁶

extension by two orders of magnitude in both x and Q²

DIS NC X-section

 $\frac{d^2 \sigma^{e^{\pm}p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} (Y_+ F_2(x, Q^2) - y^2 F_L(x, Q^2) - Y_- x F_3(x, Q^2))$

where $Y_{\pm} = 1 \pm (1 - y)^2$

$F_2 = e_i^2 (q(x) + \overline{q}(x)) \quad (\text{in QPM})$

 F_L – long. str. fnc; important only for y > 0.6

 F_3 – arises from Z - exchange; negligible for $Q^2 < 5000 \,\text{GeV}^2$

NLO QCD Fits

DGLAP predicts Q² evolution of $F_2(x,Q^2)$ for given parton densities at $Q^2 = Q^2_{0}$

$\frac{\text{H1 fit}}{\text{Q}^2_0 = 1} \text{ GeV}^2$

gluon : $xg(x,Q_0^2) = A_g x^{B_g} (1-x)^{C_g}$ valence $u_v : xu_v(x,Q_0^2) = A_u x^{B_u} (1-x)^{C_u} (1+D_u x^{E_u})$ valence $d_v : xd_v(x,Q_0^2) = A_d x^{B_d} (1-x)^{C_d} (1+D_d x^{E_d})$ sea : $xS(x,Q_0^2) = A_s x^{B_s} (1-x)^{C_s}$ strange quarks: $\overline{s} = \overline{u}/2$ assume $\overline{u} - \overline{d}$ param. from MRS $\alpha_s(M_7) = 0.118$ $\frac{ZEUS \text{ fit}}{Q^2_0 = 7 \text{ GeV}^2}$

gluon : $xg(x, Q_0^2) = A_g x^{\delta_g} (1-x)^{\eta_g} (1+\gamma_g x)$ sea : $xS(x, Q_0^2) = A_S x^{\delta_S} (1-x)^{\eta_S} (1+\gamma_S x+\varepsilon_S \sqrt{x})$ u-d difference : $x\Delta_{ud}(x, Q_0^2) = A_{\Delta}^{\delta_{\Delta}} (1-x)^{\eta_{\Delta}}$

strange quark assumed 20% of sea valence quarks from MRS(R2) $\alpha_s(M_Z)=0.118$

• fixed flavour scheme - 3 light flavours, heavy flavours in NLO via BGF

- momentum sum rule
- quark counting rules

Х

- strong rise of F₂ at low x
 good agreement between expts
- systematically dominated
 (2-3%) up to Q² ≈1000
 GeV²

NLO DGLAP fit gives good description of the HERA & fixed target data

Scaling violation well interpreted by QCD

No indication of (log 1/x)ⁿ corrections in HERA regime

Long standing controversy between μp (NMC, E665) and vN (CCFR) data

H1 data overlap and extrapolate well to μp data

CCFR data being re-analysed, with new treatment of charm and shadowing

xg(x,Q²)

10% uncertainty at Q²=20 GeV² & $x=5\times10^{-5}$

 F_2 rise at low x not completely driven by the increase of gluon density from parton splitting

Gluon Determination

Extraction of F_L

remember $Y_{\pm} = 1 \pm (1-y)^2$

• subtraction method

$$\sigma_r = \left(\frac{xQ^4}{2\pi\alpha^2 Y_+}\right) \frac{d^2\sigma}{dx\,dQ^2} = F_2 - \frac{y^2}{Y_+}F_L$$

measure σ_r at high y - for $Q^2 \ll M_Z^2$

fitted F_2 at low y extrapolated to high y & subtract out F_L

★ derivative method

 $\frac{d\sigma_r}{d\log y} = -\frac{dF_2}{d\log y} - 2y^2 \frac{2-y}{Y_+^2} F_L + \frac{y^2}{Y_+} \frac{dF_L}{d\log y}$ assume $\frac{dF_2}{d\log y} = A\log y + B$ straight line fit to $d\sigma_r/d\log y$ Q² bins at y < 0.2

Extraction of F_L

 \star derivative

• subtraction

$F_{\rm L}$ compatible with QCD predictions

Both methods in agreement

Direct measurement needs different beam energies or ISR events

Investigation of gluon via charm production

(b)

- Charm production dominated by BGF diagram
 - probe of the gluon density
- investigate via D^* production

 $F_c \approx 25\%$ at low x & high Q²

 F_c at Q²=1.8 GeV² is $\approx 10\%$

F_c rising quicker than F₂

BFKL predicts greater forward π^0 production than DGLAP expectation

DGLAP vs BFKL –forward π^0 production

MC models implementing DGLAP evolution fail to describe π^0 data

adding resolved component to incoming virtual photon improves description of data

BFKL formalism gives good description of data. Still question marks over absolute normalisation

Event Shape Variables

Any 'infra-red' safe event variable <F> can be written as

Log change of the strong coupling const $\propto 1/\log(Q)$

Power corrections or hadronisation effects $\propto 1/Q$

1/Q corrections not necessarily related to hadronisation

BUT

soft gluon phenomenon at small momentum scales β_{0} (μ_{1})

$$\langle F \rangle^{\text{pert}} = c_1(x,Q)\alpha_s(\mu_R) + \left[c_2(x,Q) + \frac{\mu_0}{2\pi}\log\left(\frac{\mu_R}{Q}\right)c_1(x,Q)\right]\alpha_s^2(\mu_R)$$

 $c_1 \& c_2$ are coefficients in the $\overline{\text{MS}}$ scheme μ_{R} is the renormalisation scale taken to be Q

The Breit Frame

Phase space for $e^+e^$ annihilation evolves with $Q/2 = \sqrt{s/2}$

Current hemisphere of Breit frame evolves as Q/2

Current region $\equiv e^+e^$ annihilation Thrust T_C or T_m

 $\tau_{c} = 1 - T_{c} = 1 - \max \frac{|p_{h} \cdot n_{T}|}{|p_{h}|}; n_{T} = \text{thrust axis} \quad \text{momentum tensor}$

C parameter $C = 3(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)$

where λ_i are the eigenvalues of the

$$\Theta_{jk} = \frac{\frac{p_{j_h} p_{k_h}}{|p_h|}}{\frac{p_{j_h} p_{k_h}}{|p_h|}}$$

Thrust T or T_z

 $\tau = 1 - T = 1 - \frac{|p_h.n|}{|p_h|}; n \equiv \text{hemisphere axis}$

 y_{fJ} & y_{k_t} are transition values for $(2+1) \rightarrow (1+1)$ jets for the factorisable JADE algo. & the k_t algo. respectively

Jet mass ρ

$$\rho = \frac{M^2}{(2E_{\text{tot}})^2} = \frac{\binom{1}{h} p_h^2}{4\binom{1}{h} E_h^2}$$

Jet Broadening B

$$B = \frac{|p_h \times n|}{2|p_h|} = \frac{|p_{\perp h}|}{2|p_h|}$$

Data vs NLO

Events more pencil like as $Q^2 \uparrow$

Non-pert corrections decrease as $Q^2 \uparrow$

Non-pert correction for jet variables smaller over all Q²

$$\left\langle F\right\rangle^{\text{pow}} = a_F \frac{32}{3\pi^2} \frac{M}{p} \left(\frac{\mu_I}{Q}\right)^p \left[\overline{\alpha}_{p-1}(\mu_I) - \alpha_s(Q) - \frac{\beta_0}{2\pi} \left(\ln\frac{Q}{\mu_I} + \frac{K}{\beta_0} + \frac{1}{p}\right) \alpha_s^2(Q)\right]$$

 β_0, K are constant dependent on number of flavours

 μ_I - `infra - red' matching scale, $\mu_I = 2 \text{ GeV}$

 a_F , p - calculable coeff dependent on observable F p = 1 except for y_{k_t} where p = 2

For $B, a_F = F(\alpha_{s-CMW}(Qe^{-3/4}), N_f)$

Power correction fit

 $M \approx 1.43 - 2$ - loop correction (Milan factor) $\overline{\alpha}_{p-1}$ - an universal, non - pert. effective strong coupling below μ_I

Reasonable fit to data

Closer examination shows NLO calculation (for B in particular) has wrong x dependence

x-dependence on result, particular for B and T

H1 & ZEUS consistent (exception ρ , where different defⁿ used) y_{fJ} power correction coeff a_F not compatible with data

Upgrade of HERA & Detectors

- Magnets around beamline (including inside detector vol)
- β functions reduced by factors of 4-5
- increased currents

factor of 5 increase in luminosity

e-polarisation

forward tracking upgrade new lumi detectors microvertex detector(ZEUS) improved tracking trigger (H1) :

simulation of F_2 with 1 fb⁻¹ at HERA

measurements of F_c and F_b to 5% & 10% respectively

stringent tests of QCD evolution

important expt. input to future hadron colliders !

precision on $\alpha_s(M_Z)$ 0.001

gluon density extraction to 1%

Summary

- structure func precision a few %
- DGLAP evolution OK down to $Q^2 \approx 1 \text{ GeV}^2$
- F_c up to 25% of F_2
- \bullet an indirect measurement of $F_{\rm L}$
- event shapes in reasonable agreement with NLO & power corrections. Still outstanding questions
- HERA high luminosity running deliver 1 fb⁻¹ per expt. during $2001 \rightarrow 2006$