H1

# Jet Studies at HERA



#### Hans-Christian Schultz-Coulon Universität Dortmund

ISMD 2000, Tihany, Hungary 11. October 2000

### Contents of the Talk





### The Breit Frame



### **Inclusive Jet Cross Section**



$$\sigma_{jet}^{pert} = \sum_{n} \alpha_{s}^{n} \left( \sum_{i=g, q} C_{i,n} \otimes pdf_{i} \right)$$

$$\sigma_{jet} = \sigma_{jet}^{pert} \cdot (1 + \delta_{hadr. \, corr.})$$

Hadronization Corrections <10 %

Sensitivity to strong coupling constant  $\alpha_{\text{s}}$ 





# Comparison of $\alpha_{\text{s}}$ Results



H1:

 $\alpha_{s}(M_{Z})$  = 0.1186 ± 0.0059

ZEUS:

 $\alpha_{s}(M_{Z}) = 0.1166 + 0.0068 - 0.0064$ 

World average [J. Phys. G26 (2000) R27]  $\alpha_s(M_Z) = 0.1184 \pm 0.0031$ 





#### HERA "standalone" QCD Test A simultaneous QCD fit of $\alpha_s$ and xg(x)

#### **Basic idea:**

Use three different cross sections to disentangle  $\alpha_s$ , g(x), q(x)

> $\sigma_{DIS} \sim q(x)$  $\sigma_{\text{jet}} \sim \alpha_{s} \cdot (c_{g}g(x) + c_{q}q(x))$

$$\sigma_{\text{dijet}} \sim \alpha_{s} \cdot (c'_{g}g(x) + c'_{q}q(x))$$

#### Kinematic range:

σ

- DIS x-section:  $150 < Q^2 < 1000 GeV^2$
- Jet cross section:  $150 < Q^2 < 5000 \text{ GeV}^2$

#### Fit:

- fixed factorization scale  $\mu_f$
- systematics include experimental, scale and hadronization uncertainties



### Inclusive Jets: Comparison with NLO



Hans-Christian Schultz-Coulon, Universität Dortmund

ISMD 2000, October 11<sup>th</sup> 2000, Tihany, Hungray

### Dijet Cross Sections



#### The Scale Problem



#### Forward Jet Production in DIS



# Forward Jets: E<sub>t</sub>/Q<sup>2</sup> Dependence



#### **Event selection:**

- $Q^2$  > 10 GeV<sup>2</sup>
- y > 0.1, E'e > 10 GeV
- η<sub>jet</sub> < 2.6 (θ<sub>jet</sub> > 8.5°)
  E<sub>t,jet</sub> > 5 GeV

Something in addition to standard direct  $\gamma$  (LO) predictions needed

resolved  $\gamma^*$ **BFKL** 

. . .

#### Forward Jets & Resolved Virtual $\gamma'_s$



Include resolved  $\gamma^*$ structure in models [via photon pdf's]

| "direct $\gamma$ "      | ok |
|-------------------------|----|
| "resolved $\gamma^{*"}$ | ok |
| BFKL                    | ok |

### Virtual $\gamma$ Structure: Dijet x-Section



#### Hans-Christian Schultz-Coulon, Universität Dortmund

ISMD 2000, October 11<sup>th</sup> 2000, Tihany, Hungray

### $Q^2$ Dependence of $\gamma^*$ Structure



#### Studying the BFKL Region

![](_page_18_Figure_3.jpeg)

# Combining BFKL & DGLAP: CCFM

![](_page_19_Figure_3.jpeg)

# $\gamma p$ Dijet Cross Section

![](_page_20_Figure_3.jpeg)

## The Gluon Density of the Photon

![](_page_21_Figure_3.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_23_Picture_2.jpeg)

#### DIS region: [Q<sup>2</sup>,E<sub>t</sub><sup>2</sup> large; Q<sup>2</sup> ≥ E<sub>t</sub><sup>2</sup>] • pQCD works

- $\alpha_{s} \otimes g(x)$
- scale ?

Intermediate regime:  $[E_{t}^{2} \sim Q^{2}]$ 

- scale problem
- DGLAP breakdown
- $\cdot$  resolved  $\gamma$
- BFKL, CCFM etc.

resolved  $\gamma^*$  region: [Q<sup>2</sup> < E<sub>t</sub><sup>2</sup>]

- concept of  $\gamma$  structure "ok"
- $g^{\gamma}(x)$  in LO
- NLO photon pdf's ?