Search for Contact Interactions and Leptoquarks at HERA

Carsten Niebuhr

DESY, Hamburg

representing the H1 and ZEUS collaborations

- Data Sets
- Contact Interactions
- Search for Leptoquarks
- Lepton Flavour Violation
- Summary

Available Datasamples at HERA

More than 100 pb⁻¹ delivered per experiment

eq - Scattering and Kinematics

$$Q^2 = -(k - k') = -q^2$$
four momentum transfer squared $x = -q^2 / (2 \cdot P \cdot q)$ Bjorken scaling variable $y = (q \cdot P) / (k \cdot P) = (1 - \cos \theta^*) / 2$ inelastici ty $s = 2 \cdot k \cdot P = Q^2 / (x \cdot y)$ ep CM energy squared

High Q² Event Distributions for e⁺p at 318 GeV

$$Q^2_{DA} > \ 35,000 \ GeV^2$$

Year	Luminosity	data	SM
94-97 e ⁺	47.7 <i>pb</i> ⁻¹	2	0.34
98-99 e ⁻	16.2 pb^{-1}	2	1.02
99-00(part) <i>e</i> ⁺	39.2 pb^{-1}	1	0.53

$x_{DA} \ > \ 0.55 \ and \ y_{DA} \ > \ 0.25$

Year	Luminosity	data	SM
94-97 e ⁺	47.7 <i>pb</i> ⁻¹	4	1.9
98-99 e ⁻	16.2 <i>pb</i> ⁻¹	1	1.3
99-00(part) e ⁺	39.2 pb^{-1}	0	1.6

New data at 318 GeV consistent with SM expectation

NC cross section for e⁻ p / e⁺p at 318 GeV

- data are well described by SM over more than 6 orders of magnitude
- possible deviations from SM would show up at large Q2

Possible sources:

- Compositeness
 - limits on scale parameter $\Lambda^{+/-}$

 $(g^2 = 4\pi)$

- new heavy particles like Leptoquarks
 - limits on ratio M/λ
- low scale Quantum Gravity
 - limits on scale

M_s

Analysis methods:

Obtain sensitivity to new physics via observation of distortion of cross section especially at high Q²:

• **ZEUS:** shape analysis using 2 dim unbinned log likelihood :

• **H1**: 1 dimensional χ^2 method:

Formalism:

Effective Lagrange Density (vector terms only) modifies scattering amplitude:

$$L_{CI} = \sum_{q=u,d} \sum_{a,b=L,R} \eta_{ab}^{q} (\overline{e}_{a} \gamma^{\mu} e_{a}) (\overline{q}_{b} \gamma_{\mu} q_{b})$$
$$\eta_{ab}^{q} \equiv \pm (g / \Lambda_{ab}^{q})^{2}$$

$$g^2 = 4\pi$$
; Λ = effective mass scale

CI Limits on Compositeness Models

48 pb⁻¹ ZEUS e⁺p 1994-97 Combination of all H1 data sets: ~100 pb⁻¹ Λ^+_{min} (TeV) Λ_{\min}^{-} (TeV) (95% C.L.) e⁺p and e⁻p often complementary in sensitivity VV 5.0 4.7 VA 2.6 2.5 εΛ **(TeV)** 3.7 AA 2.6 -1.3 -1.5 <u>-3 -5</u> 5 -2 **X1** 2.8 1.8 e⁺p & e⁻p preliminary Λ^+ (TeV) Λ^{-} (TeV) $L_{int}=97 \text{ pb}^{-1}$ X2 3.1 3.4 LL 1.6 4.3 2.8 **X3** 2.9 LR 1.8 5.4 4.3 X4 4.0 RL 1.9 5.4 X5 3.3 3.5 RR 1.6 4.3 X6 1.7 2.8 VV 9.2 **U1** 2.6 2.0 3.0 H **U2** 3.9 4.0 AA 5.8 3.5 U3 3.5 3.7 VA 4.0 3.9 ---**U4** 4.8 4.4 LL+RR 2.0 5.9 **H1** U5 4.2 4.0 LR+RL 2.1 7.4 **U6** 1.8 2.4 -0.5 0 0.3 -0.3 -0.2 -0.1 0.1 0.2 0.3 -0.4 0 ε/Λ^2 (TeV ⁻²) ϵ/Λ^2 (TeV⁻²)

No evidence for CI signal \Rightarrow resulting limits on Λ are in the range **1.6 - 9.2 TeV** depending on the chiral structure of the model

Comparable limits are obtained at LEP and at the TeVatron

Limits on Low Scale Gravitational Effects

• string theory implies existence of **extra spatial dimensions**, which must be **compactified**. conventionally:

 $M_{PL} \sim 10^{19}$ GeV implies R<1/M_{PL}~10⁻³² cm => unobservable

- following an idea of Arkani-Hamed, Dimopoulos, Dvali one can circumvent the hierarchy problem: fundamental Planck scale, where gravity becomes comparable in strength to other interactions is taken to be near the weak scale :
 - => n Large Extra Dimensions get compactified to size **R ~ 1 / M_S** with M_S= O (1 TeV)
- huge 1/M_{PL} suppression of the graviton coupling to SM particles gets compensated by summation over large multiplicity of Kaluza-Klein modes
 => effective contact interaction coupling

$$\eta_{\rm G} = \frac{\lambda}{{
m M}_{
m S}^4}$$

• resulting lower limits from combination of all data sets (H1: 97 pb⁻¹):

 $M_s > 0.63 \text{ TeV}$ for $\lambda = +1$ $M_s > 0.93 \text{ TeV}$ for $\lambda = -1$

Search for Leptoquarks in Contact Interactions: $M_{LQ} > \sqrt{s}$

Leptoquarks are scalar or vector bosons which couple to quarks & leptons.

Buchmueller- Rueckl-Wyler Model: 14 types of LQs

which are classified by their quantum numbers:

$$S_{L,R}^{J}$$
 or $V_{L,R}^{J}$, $F = L + 3B = 0, \pm 2$

Combination of all H1 data sets: ~100 pb ⁻¹									
		H1 preliminary							
	LQ	η^u	η^d	F	M_{LQ}/λ				
		$(\lambda/M_{LQ})^2$	$(\lambda/M_{LQ})^2$		[GeV]				
	S_0^L	$+\frac{1}{2}$		2	1070				
	S_0^R	$+\frac{1}{2}$		2	960				
	\tilde{S}_0^R		$+\frac{1}{2}$	2	290				
	$S_{1/2}^{L}$	$-\frac{1}{2}$		0	380				
	$S_{1/2}^{\dot{R}}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	380				
	$\tilde{S}_{1/2}^{L}$		$-\frac{1}{2}$	0	650				
	S_1^L	$+\frac{1}{2}$	+1	2	690				
	V_0^L		-1	0	1030				
	V_0^R		-1	0	810				
	$ ilde{V}^R_0$	-1		0	530				
	$V_{1/2}^{L}$		+1	2	480				
	$V_{1/2}^{R}$	+1	+1	2	1510				
	$ ilde{V}_{1/2}^{L}$	+1		2	1690				
	V_1^L	-2	-1	0	680				

=> Limits for M_{LQ}/λ are in the range 0.3-1.7 TeV

LQ Search : Resonance Decays $\rightarrow e + jet + X$

94-97 e⁺ data 37 pb⁻¹

- H1: Eur.Phys.J.C11:447-471,1999
- optimised angular (y) cut for improved signal/bkg
- slight excess around 200 GeV at high y

99-00 e⁺ data 48 pb⁻¹

- new data with same analysis cuts
- mass effect suggested from 94-97 data is not confirmed

H1 preliminary

LQ Search in Resonance Decays $\rightarrow e + jet + X \& \overline{v} + jet + X$

$$M_{CJ} = e + jet - mass$$

$$M_{vjs} = \overline{v} + jet - mass$$

LQ Limits for Resonance Decays $\rightarrow e + jet + X \& \overline{v} + jet + X$

Summary of present LQ Limits

Search for Lepton-Flavour violating LQs $e \leftrightarrow \tau$

LFV can be mediated by LQs which couple to different generations ($e < -> \mu$ usually better constrained by low energy experiments)

Limits	on	$\lambda_{ei} \lambda_{\tau j}$ /	M_{LQ}^2	in 10 ⁻⁴	GeV ⁻²	$(\mathbf{F}=0)$)
--------	----	-----------------------------------	------------	---------------------	-------------------	------------------	---

e	τ	¶i¶j	$S^L_{1/2}$	$S^R_{1/2}$	$\tilde{S}^L_{1/2}$	V_0^L	V_0^R	$ ilde{V}^R_0$	V_1^L
	1	11	$ au \to \pi e \\ 0.0032 \\ 0.030 \\ 0.046 \\ \end{array}$	$ au ightarrow \pi e$ 0.0016 0.025 0.037	$ au o \pi e \\ 0.0032 \\ 0.046 \\ 0.062 \\ \end{array}$	G _F 0.002 0.033 0.049	$ au o \pi e \\ 0.0016 \\ 0.033 \\ 0.049 \\ ext{}$	$\tau \to \pi e$ 0.0016 0.024 0.041	G_F 0.002 0.012 0.019
1	2	12	0.030	$\tau \rightarrow K e$ 0.05 0.025 0.038	$\tau \rightarrow K e$ 0.05 0.040 0.063	$\tau \rightarrow K e$ 0.03 0.036 0.053	$\tau \rightarrow K e$ 0.03 0.036 0.053	0.028	$K \to \pi \nu \bar{\nu}$ 2.5 · 10 ⁻⁶ 0.012 0.021
	3	13		$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ \hline 0.049 \\ 0.065 \end{array}$	$\begin{array}{c} B \to \tau e \ X \\ 0.08 \\ \hline 0.049 \\ 0.065 \end{array}$	$B \rightarrow l\nu X$ 0.02 0.044 0.062	$B \rightarrow \tau e X$ 0.04 0.044 0.062		$\begin{array}{c} B \rightarrow l\nu X \\ 0.02 \\ 0.044 \\ 0.062 \end{array}$
	1	21	0.153 0.15	$\tau \rightarrow K e$ 0.05 0.092 0.095	$ au \to K e$ 0.05 0.105 0.12	$ au \to K e$ 0.03 0.049 0.064	$\tau \to K e$ 0.03 0.049 0.064	0.061 0.073	$K \to \pi \nu \bar{\nu}$ 2.5 · 10 ⁻⁶ 0.026 0.032
2	2	22	$ au ightarrow e\gamma \ 0.03 \ 0.187 \ 0.18 \ \end{array}$	$ au ightarrow e\gamma$ 0.02 0.101 0.10	0.120 0.13	0.081 0.076	0.001 0.076	0.102 0.107	0.041 0.044
	3	23		$B \rightarrow \tau e X$ 0.08 0.153 0.14	$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ 0.153 \\ 0.14 \end{array}$	$B \rightarrow l\nu X$ 0.02 0.102 0.112	$B \rightarrow \tau e X$ 0.04 0.102 0.112		$B \rightarrow l\nu X$ 0.02 0.102 0.112
	1	31		$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ 0.162 \\ 0.16 \end{array}$	$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ 0.162 \\ 0.16 \end{array}$	V ₁₄₀ 0.002 0.052 0.068	$B \rightarrow \tau e X$ 0.04 0.052 0.068		V _{NÅ} 0.002 0.052 0.068
3	2	32		$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ 0.202 \\ 0.19 \end{array}$	$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ 0.202 \\ 0.19 \end{array}$	$B \rightarrow l\nu X$ 0.02 0.073 0.083	$B \rightarrow \tau e X$ 0.04 0.073 0.083		$B \rightarrow l\nu X$ 0.02 0.073 0.083
	3	33		0.275	0.275	$\tau \rightarrow e\gamma$ 0.51 0.144 0.14	$\tau \rightarrow e\gamma$ 0.51 0.144 0.14		0.144 0.14
Mos	Most stringent limit from: indirect					rect	ZEU	JS	H1

Summary and Conclusions

- no evidence for Contact Interactions in O(50-100 pb⁻¹) ep data => strong limits from HERA for
 - compositeness scales up to $\Lambda > 1.6 9 \text{ TeV}$
 - leptoquarks masses $M_{LO}/\lambda > 0.3 1.7 \text{ TeV}$
 - low scale gravitational effects $M_s = 0.6 0.9 \text{ TeV}$
- direct searches for resonances in e+jet and v+jet yield lower mass limits which are typically in the range: M > 150 - 290 GeV for $\lambda = 0.3$
- limits are set on LFV LQs: M > ~280 GeV
- significant enhancements of sensitivity can be expected after year 2001:
 - HERA luminosity upgrade => 1 fb ⁻¹ until 2006
 - lepton polarisation for H1 & ZEUS