Multiplicities & Factorial Moments

Nick Brook

University of Bristol

(on behalf of the ZEUS Collab.)

- Introduction & Motivation
- Results
- Conclusions

Naïve Quark Parton Model (QPM)

where \sqrt{s} is the eP centre of mass energy

Multiplicity Distributions

Investigation of dynamics of hadronisation process - study the $\langle n_{ch} \rangle$ as a function of invariant mass (M_{eff}) in a fixed rapidity range (in lab. frame)

 M_{eff} is essentially measuring the rapidity "along" the gluon ladder

Gluon or quark initiated - measurement of colour charge

Factorial Moments

fractal dimension techniques (eg Rényi dimensions) to multiparticle production processes

- investigation of cascading dynamics & "self-similarity" of branching processes
- predictions exist within framework of pQCD
- use of DLA and MLLA (in conjunction with LPHD)
- [theoretical work: Dokshitzer, Ochs (MLLA)
 - Dremin, Wosiek (Factorial moments)]

Mathematical Interlude

Fractal dimension, F_D

$$M \sim l^{F_D}$$

- *M* is mass & *l* is length. $F_D = 1$ for a line, $F_D = 2$ for a square... Koch Curve

→ self-similar curve with dimension $F_D = \ln(4)/\ln(3)$ Generalise to multi-fractals $F_D \rightarrow D_q$ (Rényi dimension) (*cf* replace our homogenous stick with an inhomogenous one)

$$F_q(\Delta \Omega) = \langle n(n-1)...(n-q+1) \rangle / \langle n \rangle^q, \qquad q = 2,3,...$$

where *n* is number of charged particles inside a phase-space region of size $\Delta\Omega$ and <...> denotes average.

For uncorrelated particle production within $\Delta\Omega$, $F_q = 1$ (Poisson stats) rise follows power law - "intermittency"

moments probe different dynamics depending on choice of $\Delta \Omega$

Kinematic Selections

Multiplicity: 1995 data (5.5 pb-1)

- $8 < Q^2 < 1200 \text{ GeV}^2$
- 70 < W < 260 GeV

Particles with angular acceptance of $|\eta(lab)| < 1.75$

<u>Moments: 96+97 (38.4 pb⁻¹)</u>

 $Q^2 > 1000 \text{ GeV}^2$

Moments measured in current region of Breit frame

<u>The Breit Frame</u> Brickwall' frame

Phase space for $e^+e^$ annihilation evolves with $Q/2 = \sqrt{s/2}$

Current hemisphere of Breit frame evolves as Q/2

Current region $\equiv e^+e^$ annihilation

Data grows linearly with $log(M_{eff})$

 $< n_{ch} >$ higher that e⁺e⁻ data ($M_{eff} \equiv \sqrt{s_{ee}}$), low energy pp data and (Breit) current region in DIS ($M_{eff} \equiv Q$)

Data compatible with picture of additional coherent gluon radiation due to (octet) colour charge

Systematic Checks

Event Selection:

- checks on $y_e(2\%)$, $y_{JB}(3\%)$, E- $p_z(1\%)$, vertex cut(1%)

Trk selection:

- tightening of $p_T\, cut\, (1\%)$ and $\eta\, cut\, (2\%)$

Monte Carlo dependence:

-LEPTO + POMPYT (up to $\sim 16\%$)

Analytic QCD Results

 $\Omega \equiv p_T^{cut} \text{ or } p^{cut} \text{ ie } p_T > p_T^{cut} (|p| > p^{cut})$

$$F_q(p_T^{cut}) \approx 1 + \frac{q(q-1)}{6} \frac{\ln(p_T^{cut}/Q_0)}{\ln(E/Q_0)},$$

$$F_q(p^{cut}) \approx \text{const} > 1$$

 $E = jet energy, Q_0 = parton shower cut-off. DLLA approx (Lupia, Ochs & Wosiek)$

 p_T : prediction of correlations (presence of gluon enhances probability of emission of another one) As $p_T \rightarrow Q_0$ correlations vanish due to coherence effects

p: dist^{bn} of soft gluons remains non-Poisson

MC models qualitatively describe the data (in detail there are discrepancies)

data in disagreement with theoretical predictions

> Result for momentum look similar to p_t

Systematic Checks

Event Selection:

- checks on y_e , y_{JB} , E- p_z , vertex cut

Trk selection:

- tightening of $p_T\,\text{cut}$ and η cut

Typically a few % change - but can be ~20% at low p, p_T or high z

Analytic QCD Results

 $\Omega \equiv$ polar rings of size Θ around axis centred at Θ_0 (see fig >)

$$\ln \frac{F_q(z)}{F_q(0)} = z(1-D_q)(q-1)\ln \frac{E\Theta_0}{\Lambda}$$

 $E = jet energy, \Theta_0 = opening half angle of jet, \Lambda = QCD scale$

$$z = \frac{\ln(\Theta_0 / \Theta)}{\ln(E\Theta_0 / \Lambda)}$$

Number of predictions in DLA (Dokshitzer & Dremin; Brax, Meunier & Peschanski; Ochs & Wosiek) and in MLLA (Dokshitzer & Dremin) for the Rényi dimensions, D_q .

 $D_q \rightarrow 1$ for Poisson dist^{bn}

QCD predictions have $D_q = D_q(q,z)$

Defⁿ of angular variable

For $\Theta_0 = 45^0$ & $\Lambda = 150$ MeV, general trend of data & theory agree ie moments \uparrow as $z \uparrow$

Particular at lower order moments data & theory don't agree in detail.

ARIADNE & HERWIG reproduce the data

LEPTO overshoots the data

Non-negligible hadronisation effects

Conclusions

- •<n_{ch}> higher than e⁺e⁻, low energy pp data & (Breit) DIS current region - colour charge effect ?
- •Multiplicity factorial moments exhibit strong rise in restricted intervals as p_T , $p \& \Theta$ decreases
- Analytic calculations (for partons) do not show the same increase for the factorial moments
- MC models (generally) reproduce the data
- Substantial contribution from hadronisation LPHD hypothesis non-applicable