ep-Physik bei höchsten Energien und Suche nach neuen Phänomenen

Wolfram Zeuner DESY/ZEUS

64. Physikertagung der DPG Dresden - März 2000

- Einführung
- Inklusive Wirkungsquerschnitte bei hohem Q²
 - Elektroschwache Effekte
- Suche nach neuen Phänomenen und seltenen Ereignisklassen
 - Isolierte Leptonen
 - Leptoquarks
 - Angeregte Fermionen
 - Kontakt-Wechselwirkungen
- Zusammenfassung und Ausblick

- HERA ist der einzige ep Speicherring der Welt
- Erlaubt Untersuchungen der Protonstruktur bei bisher unerreichten Q²

HERA 94-97 (98-00) e⁺/e⁻ E_e=27.5 GeV

Protonen E_p=820 (920) GeV

Schwerpunktsenergie $\sqrt{s} = 300/320 \text{ GeV}$

•
$$Q^2 = -q^2 = -(k - k')^2 = 2E_e E'_{e'}(1 - \cos q)$$

Kinematik

Negativer Viererimpuls-Austausch oder negatives Massen-Quadrat des virtuellen Photons

•
$$x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{sy}$$
 $0 < x < 1$

Bjorken-x

Impulsanteil des getroffenen Partons im Proton

•
$$y = \frac{P \cdot q}{P \cdot k} = 1 - \frac{E'_{e'}}{2E_e} (1 + \cos q)$$
 $0 < y < 1$

Inelastizität

Relativer Energieübertrag auf das Proton in seinem Ruhesystem

•
$$W^2 = (P+q)^2 = \frac{Q^2(1-x)}{x} + m_p^2$$

Photon-Proton Schwerpunktsenergie oder Massen-Quadrat des hadronischen Systems

Kinematischer Bereich von HERA

Kinematik vollständig bestimmt durch zwei Variable

Überlapp mit fixed Targetexperimenten bei kleinem y
Hohes Q²: elektroschwache Effekte und Suche nach neuen Phänomenen

Inklusive Wirkungsquerschnitte

Neutraler Strom: $e^{\pm}p \rightarrow e^{\pm}X$

Wirkungsquerschnitt:

$$\frac{ds}{dxdQ^{2}}(e^{\pm}) = \frac{2pa^{2}}{xQ^{4}} \left(Y_{+}F_{2}^{NC} \mp Y_{-}xF_{3}^{NC} - y^{2}F_{L}^{NC} \right)$$
$$Y_{\pm} = 1 \pm (1-y)^{2}$$

$$\frac{\text{Struturfunktionen des Protons}}{F_2^{\text{NC}}(x, Q^2) = \sum_q A_q(Q^2) \cdot \left[q(x, Q^2) + \bar{q}(x, Q^2)\right] + \text{QCD Korr.}}$$

$$F_3^{\text{NC}}(x, Q^2) = \sum_q B_q(Q^2) \cdot \left[q(x, Q^2) - \bar{q}(x, Q^2)\right] + \text{QCD Korr.}$$

$$F_3 - \text{Paritätsverletztende Strukturfunktion - wichtig ab } Q^2 \approx M_Z^2$$

$$F_L^{\text{NC}}(x, Q^2): \text{ longitudinale Strukturfunktion, klein bei hohem } Q^2$$

$$A_q \text{ und } B_q: \text{ Kopplungen und Propagatorterm } P_Z = \frac{Q^2}{Q^2 + M_Z^2}$$

$$q, \overline{q}: \text{Partondichten im Proton}$$

- SM beschreibt Daten über 6 Größenordnungen
- Q²" 10⁴ GeV² Massenskala der elektroschwachen Eichbosonen
- Ab $Q^{2"} 10^{3}$ GeV² Wirkungsquerschnitte: $e^{+}p < e^{-}p$

Sensitiv auf Protonstruktur (QCD) und Elektroschwache Effekte

DIS Wirkungsquerschnitte

DIS Wirkungsquerschnitte γ-Z Interferenz

$$\frac{ds}{dxdQ^{2}}(e^{\pm}) = \frac{2pa^{2}}{xQ^{4}} \left(Y_{+}F_{2}^{NC} \mp Y_{-}xF_{3}^{NC} - y^{2}F_{L}^{NC} \right)$$
$$xF_{3} = \frac{Q^{4}}{4pa^{2}} \left[\frac{d^{2}s}{dxdQ^{2}} (e^{-}p) - \frac{d^{2}s}{dxdQ^{2}} (e^{+}p) \right]$$

• z.B. alle vorhandenen Daten + 9pb⁻¹ e⁻p Reduktion des Fehler von xF₃ um 10-25%

Mehr Daten....

ZEUS Daten 1999 18pb⁻¹, E(p)=920 GeV

Höhere E(p) \Rightarrow höhere Sensitivität z.B. für Leptoquarks M_{LQ} ~ 220-230 GeV ~50% höhere Sensitivität

Keine Auffälligkeiten

Inklusive Wirkungsquerschnitte

Geladener Strom (CC): $e^{\pm}p \rightarrow \hat{\boldsymbol{n}} X$

Gestreutes Neutrino nicht beobachtbar Nur hadronischer Endzustand messbar

Differentielle Wirkungsquerschnitte:

$$\frac{d\boldsymbol{s}^{CC}}{dxdQ^{2}}(e^{\pm}) = \frac{G_{F}^{2}}{4\boldsymbol{p}x} \left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2} \left(Y_{+}F_{2}^{CC} \mp Y_{-}xF_{3}^{CC} - y^{2}F_{L}^{CC}\right)$$

• e⁺und e⁻ koppeln an unterschiedliche Quarks $\frac{d\boldsymbol{s}^{Bom}}{dxdQ^{2}}(e^{+}) = \frac{G_{F}^{2}}{2\boldsymbol{p}x} \left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2} (x\overline{u} + (1-y)^{2}xd)$

e⁺p sensitiv auf \overline{u} und d

$$\frac{d\boldsymbol{s}^{Born}}{dxdQ^{2}}(e^{-}) = \frac{G_{F}^{2}}{2\boldsymbol{p}x} \left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2} (xu + (1-y)^{2}x\overline{d})$$

e⁻p sensitiv auf u und \overline{d}

DIS Wirkungsquerschnitte

geladener Strom (CC)

H1 + ZEUS CC DATA

Geladener Strom

W-Boson Masse

$$\frac{d\boldsymbol{s}^{CC}}{dxdQ^2}(e^{\pm}) = \frac{G_F^2}{4\boldsymbol{p}x} \left(\frac{M_{Prop}^2}{M_{Prop}^2 + Q^2}\right)^2 \cdot PDF(x,Q^2)$$

- Wähle PDF z.B. CTEQ 4D
- Fit an Massenterm

1.1

1.05

0.95

0.9

74

σ⁰ / σ⁰(SM)

• a) Normalisierung frei

• b) Fixiere G_F und fitte M_W - Konsistenzcheck mit SM

ZEUS:	$M_W = 81.4^{+2.7}_{-2.6}$ (stat.) ± 2.0 (syst.) $^{+3.3}_{-3.0}$ (PDF) GeV
H1:	$M_W = 80.9 \pm 3.3$ (stat.) ± 1.7 (syst.) ± 3.7 (theo.) GeV

• Messung der W-Masse im raumartigen Bereich • Propagator und W-Boson sind das selbe Teilchen

Geladener Strom

Quarks im Proton gemessenen mit e⁺p

Reduzierter Wirkungsquerschnitt \Rightarrow PDFs sichtbarer

$$\widetilde{\boldsymbol{s}} = \frac{2\boldsymbol{p}x}{G_F^2} \left[\frac{Q^2 + M_W^2}{M_W^2} \right]^2 \frac{d^2 \boldsymbol{s}^{CC}}{dx dQ^2} = x \left[(\overline{u} + \overline{c}) + (1 - y)^2 (d + s) \right]$$

ZEUS CC 1994-97

Inklusive Wirkungsquerschnittsmessungen Zwischenbilanz

ep Streuung des neutralen und geladenen Stroms bis zu Q²" 40000 GeV² H1 und ZEUS haben mit je etwa 40pb⁻¹ e⁺p Daten und 15pb⁻¹ e⁻p Daten detailliert untersucht. QCD beschreibt Partonverteilungen im Proton über 4 Größenordnungen in • Klare Sensitivität auf Quarksorten in CC e⁺p vs e⁻p

- Propagatorterme ändern Wq dabei über bis zu 6 Größenordnungen
 - Eindeutige Hinweise für den Einfluß der schwachen Eichbosonen
 - Raumartige W-Massenmessung
- Endgültige Klärung unverstandener Effekte am Phasenraumrand bedarf wesentlich höherer Luminosität

Isolierte Leptonen $e^\pm p \to \mu^\pm X$ Event MUON-2 $D_{i}^{\alpha}=28\,\mathrm{GeV},\, D_{i}^{\alpha}=\%\,\mathrm{GeV},\, D_{i}^{\alpha}=43\,\mathrm{GeV}$ Ţ___R H1 H1: e⁺p, 36.5 pb⁻¹ e⁻p, 13.6 pb⁻¹ 6 Ereignisse: 0 Ereignisse • Isoliertes Lepton • fehlender Transversalimpuls • - 1e⁻, 5μ Standardmodell: W-Produktion, Photon-Photon, DIS-NC Überschuss nur in e⁺p - Herkunft unklar e⁺p

e ⁺ p:	e⁻p:
e ⁻ : 2.4±0.5	e ⁻ : 1.0±0.2
μ: 0.8 ±0.2	μ : 0.4 ±0.1

- W-Produktion am wahrscheinlichsten

Isolierte Leptonen

	Electrons observed (expected)	Muons observed (expected)
1994-97 e⁺p	3	U
(48 ph ⁻¹ , published)	(3.5±0.7)	(2.0±0.4)
1998-99 е ⁻ р	2	0
(16 pb ⁻¹ , preliminary)	(0.8 ± 0.4)	(0.8±0.1)
1999 e⁺p	2	4
(18 pb ⁻¹ preliminary)	(1.8±0.4)	(0.9±0.1)
Total	7	4
(82 pb ⁻¹)	(6.1±0.9)	(3.7±0.4)

ZEUS high-Pt lepton summary

Leptoquarks

LQ: Bosonen, Leptonzahl (L) und Baryonzahl (B), drittelzahlige Ladung, direkte Kopplung an Quark-Lepton Paare

• <u>HERA</u>

Direkte Suche nach LQs 1. Generation via Lepton-Quark Fusion Signatur: Resonanz in eq (vq) Massenverteilung

Einzelnes Ereignis nicht unterscheidbar von DIS NC

LQ:
$$\frac{ds}{dy} \propto (1-y)^2$$
 (Vector-LQ) oder flach (Skalar-LQ)
DIS: $\frac{ds}{dy} \propto \frac{1}{y^2}$

Theorie: BRW - SU(3) × SU(2) × U(1) erhaltend W. Buchmüller, R. Rückl, D. Wyler, Phys. Lett B191, 442 (1987) Scalare und Vector LQs mit F=0 und |F|=2 mit F=L+3B LQ-Zerfall nach eq 100% oder 50%

H1 y_e>0.4, M_e>180 GeV: 11 Ereignisse 1994-1996: 7 Ereignisse gesehen, 2.21±0.33 erwartet 1997: 4 Ereignisse gesehen, 3.17±0.49 erwartet

Signifikanz hat abgenommen

Leptoquarks e⁺p NC

• \Rightarrow konkurrenzfähige Ausschlusslimits

Leptoquark Limits

• H1: Zerfallswahrscheinlichkeit β , LQ \rightarrow e+q variiert Erweiterung des BRW Modells

- Exklusives Entdeckungspotential für HERA in breitem Massenbereich bei kleinem β
- Analoge Suche in e⁺p CC (v-jet Resonanzen)
- Keine signifikante Abweichung vom SM -(ZEUS&H1)
- \Rightarrow Limits

Leptoquarks

Leptoquarks können zu Leptonzahlverletzung führen (n≠1)

• Such an nach DIS Ereignissen: $e^+ p \rightarrow \boldsymbol{m}^+ X \qquad e^+ p \rightarrow \boldsymbol{t}^+ X$

Kein Ereignis gefunden

M_{LQ} < \sqrt{s} Limits aus Resonanzsuche z.B. ZEUS: F=0 Vector-LFV-LQ bis 285 GeV ausgeschlossen $(l_{eq1}^2 = l_{mQ}^2)$

$$M_{LQ} > \sqrt{s}$$
 $\mathbf{s} \propto \frac{\mathbf{l}_{1,i} \mathbf{l}_{n,k}}{M_{LQ}^2} \Rightarrow 252$ Hypothesen testbar

H1: 212 Hypothesen ausgeschlossen für $e \leftrightarrow \mu$ und $e \leftrightarrow \tau$ Vector und Scalar F=0 und |F|=2;

59 Limits beste Limits oder vergleichbar mit besten Limits

Angeregte Fermionen

- Modelle mit strukturierten Fermionen (Compositness)
- HERA: NC und CC

auslaufendes Lepton oder gestreutes Quark angeregt • Zerfälle:

[e g	∫ ng	∫ q g
$e^* \rightarrow \{\mathbf{n}W\}$	$n^* \rightarrow nZ$	$q^* \rightarrow \{qW\}$
eZ	eW	[qZ

• Suche nach Resonanzen in inv. Massen der Zerfallsprodukte

```
Modell von Hagiwara et al.

K.Hagiwara, S. Komamiya, D. Zeppenfeld, Z. Phys. C29, 115 (1985)

Kopplungskonstanten zu jedem Eichsektor des SM

und Substrukturskala \Lambda

SU(2) × U(1) × SU(3)

\uparrow \uparrow f' f_s

Annahmen über Relationen der Kopplungen (z.B. f = f')

\Rightarrow Verzweigungsverhältnisse hängen nur von \frac{f}{\Lambda} ab
```

Limits: $\frac{f}{\Lambda}$ vs. Masse

Angeregte Fermionen

• Mit Resonanzsuche keine Abweichung vom SM gefunden

ZEUS 93 (**p)

10-3

10 100

120

140

94+95 (e'p)

160

180

v Mass (GeV)

200

ZEUS 98+99(e*p)

 $\rightarrow \nu \gamma$

220

240

Angeregte Positronen

Ausschluss: $100 < M_{e^*} < 229 \text{ GeV } 95\% \text{ C.L.}$ für $f_{\Lambda} = M_{\star}$

Vergleichbar mit LEP Limits für $m_{e^*} > \sqrt{s_{LEP}}$

Angeregte Neutrinos Sensitivität in $e^-p > e^+p$

f = -f'

Zerfall verboten für f = f'

Ausschluss: $100 < M_{n^*} < 161 \text{ GeV } 95\% \text{ C.L.}$ $f_{\Lambda} = M_{n^*}$ für

Angeregte Fermionen

H1: e⁺p 1994-97, 37pb⁻¹

Limit für f_s=0
f_s≠0 Massenbereich 80-300 GeV ausgeschlossen vom Tevatron

Kontakt-Wechselwirkungen

- Indirekte Suche nach neuen Phänomen bei Skala $\Lambda >> \sqrt{s}$
- Interferenz von virtuellen schweren Teilchen mit γ ,Z
- Beschreibung durch punktartige 4 Fermion Wechselwirkung mit effektiver Kopplung η

Kopplungsstärke: g Skala: Λ Quarksorten q: HERA - u,d Quark Helizität (ab): LL, LR, RL, RR, VV, AA, VA Interferenz konstruktiv oder destruktiv, $\varepsilon = \pm 1$

Substruktur von Fermionen	(ZEUS & H1)
Leptoquarks	(ZEUS & H1)
virtueller Graviton-Austausch	(H1)

Kontakt-Wechselwirkungen

Idee: Virtueller Graviton-Austausch

N. Arkani-Hamed, S. Dimopolous, G. Dvali, Phys.Lett B429 (1998),223 Phys.Rev. D59 (1999) G. F. Giudice, R. Rattazi, J. D. Wells, Nucl. Phys. B544 (1999) 3

- Starke Gravitationseffekte bei subatomaren Abständen
- Gravitationsskala $M_s \approx O(TeV)$
- 4+n Dimensionen auf Radius R mit $M_P^2 \approx R^n M_S^{2+n}$ $M_P \approx 10^{19}$ GeV Planck Masse

Zusammenfassung Suche nach neuen Phänomenen

- Vielzahl von Modellen und Theorien für Physik jenseits des SM getestet
- Für $\beta < 0.5$ besten Grenzen für M_{LO} zwischen ~180 GeV und 250 GeV • Indirekte Limits für $M_{LO} > 300 \text{ GeV}$ vergleichbar mit LEP Limits • Direkte LQ Suche \Rightarrow HERA beste Limits für M_{L0} ~250 GeV
- Leptonzahl verletztende LQs, besten Limits für $M_{LQ} > 300$ GeV spez. e $\leftrightarrow \tau$
- Angeregte Fermionen e* v* konkurenzfähige Limits für Massen 190-220 GeV
 - Erstes Limit bei HERA für M_S grosse extra Dimensionen
- Es gibt zur Zeit keinen klaren Hinweis auf neue Physik
- Andererseits: H1 isolierte Leptonen im SM schwer erklärbar e⁺q-Massenverteilung in NC
- Zur endgültigen Klärung sind mehr Daten sind erforderlich

C
i
S
n

- HERA Datennahme bis Anfang September 2000 Danach Umbau zur Luminositätserhöhung
- Ab 2001 deutlich höhere Luminosität 1fb⁻¹/Experiment bis 2005 - Präsentierte Analysen mit maximal 48pb⁻¹
 - Polarisation des e[±] Strahls

Ausschnitt aus Physik-Potential

- Inklusive Wq Präzision von wenigen % bis Q^{2n} 50000 GeV²
- Direkte Messung von a und v für u und d-Quarks (6-17% Genauigkeit) Polarisation! • Messung der u und d-Quark Impulsverteilungen im Proton bis zu hohen x
- \bullet Größtes Entdeckungspotential für LQs mit $\beta{<}0.5$
- HERA bestes Testfeld für leptonzahlverletztende LQs mit Massen > 300 GeV insbesondere e↔τ konkurrenzlose Sensitivität