

Azimuthal Asymmetries in DIS

Nick Brook

University of Bristol

- Introduction
- Analysis
- Comparison with theory
- Summary

Azimuthal Distribution

Which angle?

→ fig

Proposed by Georgi & Politzer (Phys Rev Lett 40 (1978) 3.)

as a clean test of QCD

BUT

Cahn pointed out (Phys Lett B78 (1978) 269) also non-pert effects (intrinsic kt)

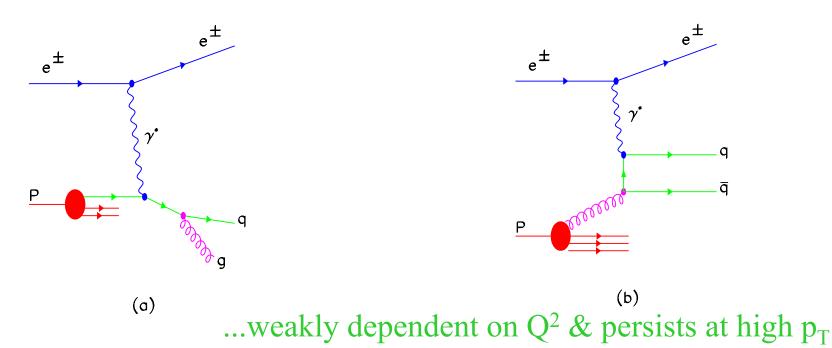
"Recently"

Chay, Ellis & Stirling (Phys Lett B269 (1991) 175) showed in HERA regime pert. effect can dominate

Where does azimuthal asymmetries manifest themselves from?

Ans: polarization of the photon and spin of the quarks & gluons

(& also coherence effects)


Hadronic Centre of mass $(\Phi = 0)$

Non-zero p_T to Φ asymmetries ie $\cos\Phi$ & $\cos2\Phi$ terms $\cos\Phi$: transverse/longitudinal interference

 $\cos 2\Phi$: interference of amplitudes of +1 & -1 helicity components

Non-pert contribution arises from intrinsic k_T of quark in proton (should fall rapidly with increasing p_T)

Perturbative contribution from leading order diagrams...

Event & Track Selection

38pb⁻¹ of data

$$180 < Q^2 < 7220 \text{ GeV}^2$$

'track' cut on z_h variable to select 'leading' particle

$$z_h = \frac{P.p_h}{P.q}$$

where P is proton 4-vec; q exch boson 4-vec; p_h hadron 4-vec

$$0.2 < z_h < 1.0$$

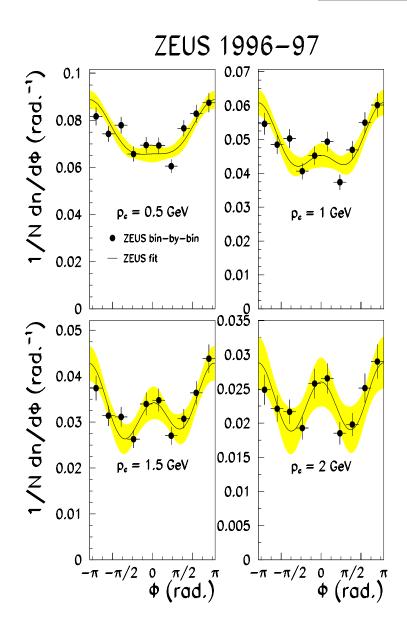
boosted to hadronic centre of mass (γ^*P frame)

Theoretical Form

$$\frac{1}{N}\frac{dn}{d\Phi} = A + B\cos\Phi + C\cos2\Phi + D\sin\Phi$$

Moments:

$$\langle \cos \Phi \rangle = \frac{B}{2A}$$

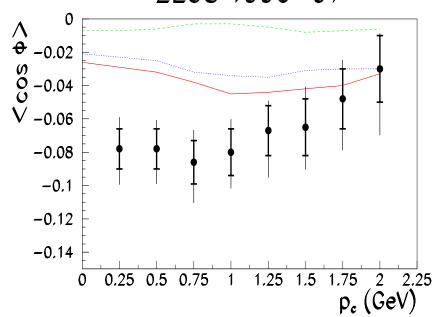

$$\langle \cos \Phi \rangle = \frac{B}{2A}$$
 $\langle \cos 2\Phi \rangle = \frac{C}{2A}$

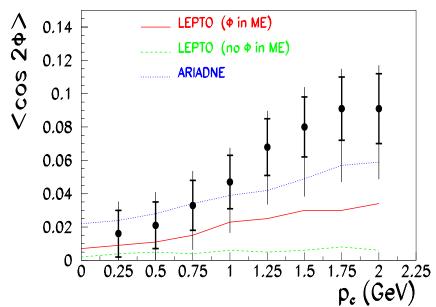
$$\langle \sin \Phi \rangle = \frac{D}{2A}$$

Theoretical code gives predictions for moments:

- ZEUS based on work of Chay et al
- Ahmed/Gehrmann (Phys Lett B465 (1999) 297) based on work of Hagiwara et al Phys Rev D27 (1983) 84

Azimuthal Distributions

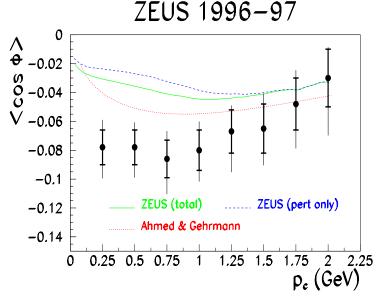

main analysis method & binby-bin corrections in agreement

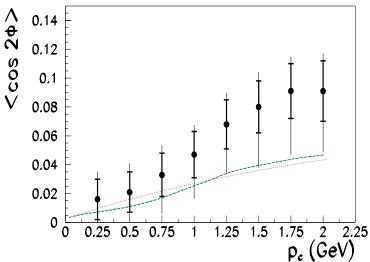

at low p_c a clear $\cos \Phi$ term

as $p_c^{\uparrow} \cos 2\Phi$ term becomes prominent

Moments vs. p_T cut

ZEUS 1996-97


$$p_T > p_c$$
 < cos Φ > -ve value


 $<\cos 2\Phi> + \text{ve rising as } p_T \text{ cut is increased}$

LO Monte Carlos qualitatively describe the data - underestimate the effect. Difference between MC models associated with fractions of BGF & QCDC evts generated

(Released version of ARIADNE is incorrect in implementation of Φ - version compared is a corrected pre-release.)

Comparison to LO theory

LO curves qualitatively reproduce the trends observed in the data - though they underestimate the magnitude

Difference between curves are calculation from ZEUS includes non-pert effects & integrates over x and Q^2

Non-pert effects (for mean intrinsic kt & frag p_T both set to 0.5 GeV) is at most 20% for $\cos\Phi$ and negligible for $\cos2\Phi$

Summary

- cos Ф term is −ve
- first measurement of a $\cos 2\Phi$ term
- $\cos 2\Phi$ insensitive to non-pert effects
- first measurement of azimuthal asymmetry due to pert QCD
- LO predictions qualitatively describe the data