Measurement of the Hadronic Final State
in Deep Inelastic Scattering at HERA

H1 Collaboration

ISSN 0418-9833
DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX, send them to (if possible by air mail):

DESY
Bibliothek
Notkestraße 85
W-2000 Hamburg 52
Germany

DESY-IFH
Bibliothek
Platanenallee 6
O-1615 Zeuthen
Germany
Measurement of the Hadronic Final State in Deep Inelastic Scattering at HERA

HI Collaboration

1. Physikalisches Institut der RWTH, Aachen, Germany
2. III. Physikalisches Institut der RWTH, Aachen, Germany
3. School of Physics and Space Research, University of Birmingham, Birmingham
4. Inter-University Institute for High Energies U.L.B.-V.U.B., Brussels, Belgium
5. Rutherford Appleton Laboratory, Didcot, Didcot, UK
6. Institute for Nuclear Physics, Cracow, Poland
7. Physics Department and IRPA, University of California, Davis, California, USA
8. Institut für Physik, Universität Dortmund, Dortmund, Germany
9. DAPNIA, Centre d’Études de Saclay, Gif-sur-Yvette, France
10. Department of Physics and Astronomy, University of Glasgow, Glasgow, UK
11. DESY, Hamburg, Germany
12. Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
13. Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
14. Institut für Reine und Angewandte Kernphysik, Universität Kiel, Kiel, Germany
15. Institut für Experimental Physik, Slovak Academy of Sciences, Košice, Slovakia
16. School of Physics and Materials, University of Lancaster, Lancaster, UK
17. Physics Department, University of Liverpool, Liverpool, UK
18. Queen Mary and Westfield College, London, UK
19. Physics Department, University of Lund, Lund, Sweden
20. Physics Department, University of Manchester, Manchester, UK
Abstract

We report on the first experimental study of the hadronic final state in deep-inelastic electron-proton scattering with the H1 detector at HERA. Energy flow and transverse momentum characteristics are measured and presented both in the laboratory and in the hadronic center of mass frames. Comparison is made with QCD models distinguished by their different treatment of parton emission.

1 Introduction

Since May 1992 when the first electron-proton (ep) collisions were observed at the HERA storage ring, a new kinematic domain of ep physics has become accessible experimentally. In this paper we report on first results of an analysis of the hadronic final state in deep-inelastic scattering (DIS) of 23.7 GeV electrons and 820 GeV protons. The data was collected in July 1992 and amount to an integrated luminosity of about 1.8 nb⁻¹.

It is already well established from analyses of previous lower energy lepton-DIS measurements [1,2,3] that an understanding of the topological characteristics of hadron production requires QCD corrections to the naive quark-parton model. In particular, the observed event shapes and the transverse momentum (pₜ) distribution of final state hadrons were described in terms of O(a_s) QCD matrix elements, describing the effects of soft gluons, and fragmentation [4].

In the present rather small sample of data, the bulk of events are at high transverse transfers Q² that have already been observed in previous experiments. However, the average invariant mass W of the hadronic final state is about 100 GeV, several times greater than in the previous experiments, the data presented here are in the DIS kinematic domain, namely Bjorken x down to 10⁻⁴. In the H1 detector we can see the scattered electron and the current jet, as can be seen in the event display (fig. 1a) and b), while the fragments from the proton remnants and from initial radiation tend to remain inside the beam pipe. Therefore we are sensitive to the soft gluon emission associated with the current quark and to large pₜ quark pair production in photon gluon fusion.

We compare our data in terms of hadronic energy flow and pₜ both in the laboratory and hadronic center of mass systems with several QCD models which differ in their treatment of parton radiation processes.

2 Detector description

We describe here briefly only the components of the H1 detector used in this analysis (see fig. 1a), referring to [5] for details.

The interaction region is surrounded by the central tracker (CT). It consists of cylindrical "jet" drift chambers for charged track reconstruction in the plane transverse to the beam interleaved with "z" drift chambers to improve track polar angle determination.
measurement. The uniform 1.2 T field is provided in the CT region by a large superconducting solenoidal magnet which surrounds the trackers and the central calorimeter. In the "backward" direction (the electron beam and +z direction) the backward multiwire proportional chamber (BPC) measures the polar angle θ, of the scattered electron and is used in the scattered electron identification and kinematic reconstruction.

Outside the track detectors are calorimeters for electromagnetic and hadronic energy measurement. A finely segmented liquid argon (LAr) calorimeter covers the forward (the proton beam and +z direction) and central regions ($4^\circ < \theta < 153^\circ$). It consists of an electromagnetic section (EMC) of between 20 and 30 radiation lengths (X_0) depth followed by an hadronic section (HAC). The total depth of the LAr calorimeter varies between 4.5 and 8 interaction lengths.

The initial calibration of the LAr calorimeter was achieved with test beam measurements using electrons and pions at CERN. The absolute scale of the energy response at HERA has been verified with charged particles by comparing their momentum measured in the CT with the energy deposited in the calorimeter. With electrons and pions produced by cosmic ray muons, the electromagnetic scale has been checked to $\pm 2\%$ [8]. Using negatively charged particle tracks originating from the ep interaction region, the hadronic scale has been checked to $\pm 10\%$. Furthermore, a study of the balance of transverse momentum between the scattered electron measured in the backward calorimeter and the recoiling hadronic system measured in the LAr calorimeter has so far verified that the overall hadronic energy scale of the LAr calorimeter is understood to within $\pm 7\%$.

The backward region ($154^\circ < \theta < 170^\circ$) is covered by a 22 X_0 deep lead-scintillator electromagnetic calorimeter (BEMC). The overall calibration of the BEMC calorimeter to $\pm 3\%$ was achieved by using kinematic constraints in DIS events [7]. A hodoscope consisting of 2 planes of scintillators (TOF) is placed behind the BEMC. It provides time-of-flight information to reject out of time proton beam background originating upstream.

A luminosity detector which measures the reaction ep $\rightarrow e\gamma p$ is placed in the backward direction with components at $z = -33$ m to tag electrons scattered at small angles and at $z = -103$ m to measure photons.

3 Event Selection

For this analysis only a subsample of our DIS candidate events is used in which the electron is scattered into the BEMC calorimeter and substantial hadronic energy deposition is observed in the detector.

The hardware trigger requires an energy cluster with more than 4 GeV deposited in the BEMC and no time of flight veto from the scintillator hodoscope. The trigger efficiency is $> 98\%$ for the final sample of selected events because an energetic BEMC cluster is required [7]. After reconstruction, the data are subjected to the following selection criteria:

1. the scattered electron, defined as the most energetic BEMC cluster, must have an energy greater than 14 GeV and be associated within 15 cm with a hit in the BPC; to ensure a precise energy measurement, the cluster center of gravity must not be too close to the beam pipe, i.e. $|\Delta x_{\text{c.g.}}| > 15$ cm or $|\Delta y_{\text{c.g.}}| > 15$ cm;

2. the BPC hit must lie between 18 and 60 cm from the beam line, i.e. the scattering angle is between 175° and 157° when the collision occurs at the nominal ep interaction point;

3. the invariant mass squared W^2 of the hadronic system must be greater than 20 GeV2;

4. the event vertex, determined from central charged tracks, must lie within 5 cm of the nominal ep interaction point (the event vertex distribution is spread with a FWHM of 40 cm due to the length of the proton bunches in HERA).

Selection 1 eliminates the background from photoproduction in which an ep $\rightarrow e\gamma p$ fakes a DIS electron [7]. Selection 2 ensures good containment of the electron in the BEMC. Selection 3 ensures substantial hadronic energy flow into the H1 detector. Selection 4 ensures that a meaningful determination of kinematic variables is possible.

Fig. 1c shows the distribution in z and Q^2 for the final sample of 88 events after identification and rejection of 6 remaining background events (p-gas or p-beam interaction).

For the hadron analysis only tracks other than the electron which meet the following requirements are used:

- they must be measured in the central tracking chamber with at least 10 hits (a maximum of 56) and have a polar angle between 22° and 100°;

- after being constrained to the average beam position in the transverse plane, they must have a transverse momentum p_T of more than 100 MeV and a fraction of momentum error $\Delta p/p$ of less than 0.5.

The reconstruction efficiency for tracks fulfilling these conditions in our DIS sample is $89 \pm 2\%$ obtained from the visual scan.

For the calorimetric measurement of the hadronic energy flow we use the contribution of the liquid argon and BEMC calorimeters. Electronic noise is included in the data simulation using H1 events recorded with random triggers. After on-line reconstruction the summed contribution of the electronic noise in all LAr calorimeter cells to the energy measurement is 0.3 GeV with an r.m.s. of 0.9 GeV.

4 Kinematics of the DIS Events

In DIS events, kinematic variables can be determined from either the scattered electron or the produced hadrons. A comparison of the two is a good check that the data satisfy the kinematic constraints of energy and momentum conservation. Such a check is
effectively carried out by comparing estimates of both the momentum transverse to the
beam axis p_T and the DIS scaling variable y.

Both p_T and y are determined from the energy E'_e and polar angle θ_ℓ of the scattered
electron using the expressions

$$p_T = E'_e \sin \theta_\ell, \quad y = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta_\ell}{2}$$

where E_e is the incident electron energy taken to be the beam energy.

For the measurement of y from the hadronic system we use the Jacquet-Blondel
method [8], namely

$$y_h = \frac{E_h}{\sum \text{hadrons}} - \frac{p_{th}}{2E_h},$$

where E_h is the energy of a hadron and p_{th} its momentum component along the $+z$
direction. y_h can be determined either by summing over all calorimeter cells or over a
combination of tracks and calorimeter cells. Since in our data sample most of the events
are at low Q^2 with correspondingly low particle energies and multiplicities, we find that
the combined method is more precise, and so we use it for the determination of y_h.

The electron/hadron comparison of p_T and y can be summarized by examining the
means and widths of the distributions of the ratios p_{th}/p_T and y_h/y_e.

$$< p_{th}/p_T > \quad \text{r.m.s.} \quad < y_h/y_e > \quad \text{r.m.s.}$$

data $0.83 \pm 0.04 \quad 0.34 \quad 0.86 \pm 0.04 \quad 0.31$

g. $0.86 \pm 0.01 \quad 0.34 \quad 0.87 \pm 0.01 \quad 0.34$

For comparison transverse momenta a cut in the electron transverse momentum of
$p_{T_e} > 3$ GeV is applied. p_{th} is the negative transverse component of the hadronic
momentum vector projected onto the electron direction and is measured with calorimeter
energies. The ratio y_h/y_e is studied here for a subsample of events satisfying $y > 0.1$
to allow a good determination of y_h. The data are compared with a detailed simulation
of DIS events after the same selection criteria have been applied. With our present
statistics, the reconstruction of kinematics is not sensitive to the QCD model used. We
conclude from these comparisons that the selected sample of DIS events is consistent
with kinematic expectation. The discrepancies of the mean values of the ratios quoted
above from unity are expected because, for the low Q^2 of these data, the hadronic energies
are low and sometimes not visible in the calorimeter. These discrepancies are however
well reproduced by the MC simulation demonstrating that the measurement of tracks and calorimetric energy flow in this kinematic region is well understood.

In the following, we will use the scaling variable x and the hadronic invariant mass
W determined using

$$x = \frac{Q^2}{s y_h}, \quad W^2 = s y_h - Q^2 + M^2$$

where s is the e^+e^- center of mass energy (37600 GeV2), M is the proton mass and Q^2
is obtained from the electron with

$$Q^2 = 4 E'_e E_e \cos^2 \theta_\ell.$$

The Lorentz transformation from the laboratory system to the hadronic center of mass
(CMS) is performed using y_h and the direction and energy of the scattered electron,
since this combination is relatively insensitive to QED radiation effects.

5 QCD Models and Simulation

In the comparison of our data with theoretical models, we investigate three
different models for the simulation of QCD effects in deep inelastic scattering. We
have developed a new model for soft parton fragmentation, namely the Lund string model
implemented in HERWIG [9], and to a parametrization of the proton structure found
in the literature (see, e.g., [10]) which describes data [11] at values of $x > 8 \times 10^{-3}$
and is consistent with our data at lower values of x [7]. The QCD prescriptions are as follows.

Leading log parton showers (PS)

In $e^- p$ collisions two parton showers are generated, one from the time-like soft
parton, and one from the space-like initial parton in the proton. The energy
yield in the shower is determined by the virtuality of the parton and the
quark-photon vertex. In $e^+ p$ scattering Q^2 or W^2 or some function of x
can be chosen as the scale for the maximum of the allowed virtuality. In this experiment
we consider for the first time the dispersive region where $Q^2 \approx 15$ GeV2
and $W^2 \approx 10^3$ GeV2, in which significantly more gluon radiation is predicted
than in the W^2 scale. For comparison with data, we have chosen the two scales Q^2 and
W^2. Distributions for events generated with both model Q^2 and W^2
values thus provide a comparison of our data with various QCD processes.

Color dipole model (CDM)

In contrast to the bremsstrahlung-like parton shower model, the CDM does not
guarantee that initial and final state radiation. It is highly unlikely that the
emission of a color dipole will radiate like the scattered parton with a
subsequent quark or the extended proton remnant. In this model
implemented in HERWIG [10], the scale is given by the p_T of the radiated gluon
and is proportional to W^4. Distributions labelled with CDM are based
on events generated with HERWIG 6.1 [14] for the electroweak interaction and photoproduction.

$O(\alpha_s)$ matrix element and parton showers (ME+PS)

Here the photon-gluon fusion and gluon radiation processes are simulated using
the matrix element involving α_s, matrix elements, and additional soft emissions are added using the
ME+PS shower model. The approach adopted in HERWIG 6.1 [14] is that the maximum virtuality scale is related to the first order matrix element. Distributions generated with
ME+PS are labelled with ME+PS.

The implementations of CDM and ME+PS do not include QED radiative corrections.

The requirement of $E'_e > 14$ GeV for the scattered electron implies $y > 0.1$. Therefore the radiative corrections are small (< 5%) for the distributions which
will be discussed below. This has been verified using HERWIG. The effect of choosing
ME+PS to replace QCD radiation with a different parametrization of the structure function which in our kinematic region is more steeply falling x dependence (e.g., $1/x$), gives rise to changes in some distributions of typically less than 15%. Both effects however have no impact on our
conclusions.
The results of the event generation are fed into the H1 detector simulation program, which is based on the GEANT package [16] and contains a precise description of the H1 geometry. The calorimetric response of this program has been extensively compared and tuned to test-beam results [17]. The resulting simulated events are subject to the same reconstruction and analysis chain as the real data.

6 Results

The distributions shown are not corrected for detector acceptance and resolution. They are compared with model calculations including a full simulation of the H1 detector. The detector effects are small because the simulated distributions differ by less than 25% from the generated ones.\(^\text{1}\) It is important to note that in all subsequent figures each event contributes to more than one data point, and therefore that there exist correlations between data points.

In a study of experimental systematic effects the criteria for event and track selection as well as the details of the calorimetric energy reconstruction and noise suppression scheme have been varied within reasonable bounds. A possible degradation of the track momentum resolution by 10% and the calibration uncertainty of the EMC (±2% to date) have a negligible influence on the results. The largest source of systematic error is the absolute hadronic calibration of the liquid argon calorimeter (±7% uncertainty to date), together with the calorimeter energy flow measurements. All these systematic effects are small when compared with the differences between the models which our statistical sensitivity allows us to distinguish. As a further check, all calorimetric measurements are confirmed when tracks in the central tracker only are used, though with larger error and over a smaller rapidity range.

Within the chosen acceptance cuts of the central tracker (22° < θ < 160°, p_T > 0.1 GeV) we observe on average about four charged particles per event. Their distribution in transverse momentum p_T with respect to the beam axis falls steeply (fig. 2). The flow of energy measured in the calorimeter transverse to the beam axis, E_T, is shown in fig. 3a as a function of pseudorapidity η = −ln tan(θ/2). Here θ is the polar angle of the energy deposition with respect to the proton beam axis. Fig. 3b shows the flow of E_T, measured with the calorimeter in the rapidity interval −3 < η < 3, as a function of φ. Here φ is the angle in the plane transverse to the beam direction between the scattered particle and the energy deposition. We observe the current jet as collimated energy flow balancing the p_T of the electron at φ = π.

The most natural frame to study the hadronic final state is its center of mass system (CMS). In this frame we define the z' axis\(^\text{2}\) as the direction of the exchanged virtual photon. In the naive quark parton model the current and target jet fragmentation regions then correspond to the +z' and −z' hemispheres. In fig. 4 the energy flow measured with the calorimeter as a function of φ' is shown, where φ' is the angle with respect to the +z' direction. A well collimated current jet is evident. In the

\(^{1}\)This is not so for calorimetric measurements in the forward region (rapidity > 3) where the difference increases to 60% because particles at small polar angles hit the beam pipe and spray energy into the forward calorimeters.

\(^{2}\)The transformed variables are denoted with a ' as superscript.

hadronic CMS the distribution of particle momenta transverse to the virtual direction as function of Feynman x, x_F = p_T^2/p_T^{max} is particularly sensitive to QCD models [2]. Here p_T^{max} = W/2 is the maximum of the kinematically longitudinal momentum carried by a single particle. Fig. 5 displays the x_F distribution and the mean transverse momentum squared < p_T^2 > of the charged particles as function of x_F ("seagull" plot). We are not sensitive to negative x_F because of the angle cut used in this analysis.

In all the above distributions both the ME+PS and the CDQ models are in agreement with the data, and are indistinguishable with the available statistics. Both the distributions of transverse energy (figs. 3a, b) and the width of the current jet (figs. 5b, 4, 5) are described correctly. However the parton shower event with the large scale, PS(W), predicts too much transverse energy and the event with the small scale, PS(Q^2), predicts too little (figs. 3a, 4). The same effect is seen on the "seagull" plot (fig. 5), where PS(W) is found to overestimate the average of the produced particles while PS(Q^2) underestimates it. Varying A_QCD between 800 MeV for PS(Q^2) and PS(W) does not lead to an adequate description of our data. The prediction of the simple quark parton model without QCD corrections is found to be similar to the PS(Q^2) model and can thus also be excluded. This is true even if we increase the parameter governing the p_T generated in the fragmentation process by a factor of 2.

Conclusions

The hadronic final state in deep inelastic ep scattering has been measured for the first time at HERA in a new kinematic domain. The data are in good agreement with expectations. The observed widening of the current jet is described when it is described in the parton emission. The models based on first order matrix element calculations predict jet production at small transverse momentum. The leading log parton shower approach fails if either W^2 or Q^2 is chosen as the parameter controlling the amount and hardness of gluon radiation, although an intermediate model may still be compatible with our data. Forthcoming, more precise data, will allow a stringent comparison as well as other QCD tests.

Acknowledgements

We are grateful to the HERA machine group whose outstanding efforts made the experiment possible. We acknowledge the support of the DESY computer center and appreciate the immense effort of the engineers and technicians who constructed and maintain the detector. We thank all funding agencies for financial support. The contributions of the collaboration also wish to thank the DESY directorate for the hospitality extended to them. Finally we would like to thank G. Ingelman and L. Lönnblad for illuminating discussions.

10
References

Fig. 3

Fig. 4