Inelastic J/ Ψ production at H1

Michael Steder

5th international workshop on heavy quarkonia, 17.10.2007, DESY Hamburg

- **1** introduction
- 2 data samples and selections
- 3 cross sections
- 4 summary and outlook

Michael Steder

H1 Integrated Luminosity / pb

H1

- 4π multi purpose detector
- lepton identification in
 - LAr calorimeter (e/ μ)
 - muon detector (μ)

inelastic J/Y event
two decay leptons
additional particles

- H1 sensitive down to $P_{T}(J/\Psi) = 0 \text{ GeV}$

inelastic J/Ψ production

color singlet model (CS)

Berger et al, Baier et al, 1981

- radiation of hard gluon

- J/ Ψ coupling to quark pair determined by $|R_{\psi}(0)|$

data compared to

	photoproduction (γ p)	electroproduction (DIS)
CSM LO (DGLAP)	EPJPSI	EPJPSI
CSM LO (kt-factorization)	CASCADE v2.0	CASCADE v1.2
CSM NLO	Krämer et al	n/a

EPJPSI

- DGLAP evolution, collinear factorization

CASCADE

- CCFM, kt-factorization, incoming parton can be off-shell

data samples and selections

inelastic J/Ψ production

photoproduction (γ p) $\mathcal{L} \approx 166 \text{ pb}^{-1}$ (2006-2007)

$$Q^{2} \sim 0 \text{ GeV}^{2}$$

 $60 < W_{\gamma p} < 240 \text{ GeV}$
 $P_{T,\Psi} > 1.0 \text{ GeV}$
 $0.3 < z_{J/\Psi} < 0.9$

Michael Steder

backgrounds from indirect J/Ψ production

diffractive $\Psi(2S)$ feed down

- $\Psi(2S) \rightarrow J/\Psi \pi^+\pi^-$ (BR ~30%)
- high z region (z \sim 0.85)
- → suppression cut: $N_{Tracks} \ge 5$ - corrected in measured cross sections
- remaining contribution:
 - overall: $\sim 1.5\%$ - highest z bin: < 5%
- B meson decays
 - low z region
 - high track multiplicity, larger $P_{T}(J/\Psi)$

- contribution:

- overall: ~ 2.5%
- lowest z bin: < 10%

→ contributions not subtracted from cross section measurements

cross sections – Q²

EPJPSI:

- Q² too steep - normalization too low

CASCADE v1.2:

- Q² too hard
- normalization too high

Michael Steder

inelastic J/Ψ production

9

cross sections – $W_{\gamma p}$

EPJPSI:

- shape of $W_{_{\mathcal{Y}^p}}$ well reproduced

CASCADE:

CS NLO (γp):

- describes data well (large normalization uncertainties)

cross sections – P_{τ}^{2}

EPJPSI MC:

- too steep in $\mathsf{P}_{_{\!\mathsf{T}}}$

CASCADE:

- DIS: P_{τ} spectrum too hard

- yp: data well reproduced

CS NLO (γp):

- data well described (large normalization uncertainties)

CS LO (γp):

- too steep in P_{T}

cross sections

as function of inelasticity z in bins of P₊

cross sections

as function of P_{τ}^{2} in bins of z

10⁴ $d\sigma/dP_T^{*2}$ [pb/GeV²] H1 preliminary - DIS: P_{τ} spectrum somewhat too hard **10²** - γ p: data well reproduced - overall - in bins of $\mathsf{P}_{\!\scriptscriptstyle \mathsf{T}}$ **10⁻²** 0.3 < z < 0.6 (x100) 0.6 < z < 0.75**10**⁻⁴ **10**⁵ 0.75 < z < 0.9 (x0.01)H1 YP CASCADE (x0.5) preliminary **10**⁻⁶ 10³ 10² P_T^{*2} [GeV²] 10 0.3 < z < 0.45 10 0.45 < z < 0.6 **10**⁻¹ $3 < z < 0.45 (x10^5)$ 0.6 < z < 0.75 < z < 0.6 (x2*10³) 0.6 < z < 0.75 (x50)0.75 < z < 0.9 10⁻³ 0.75 < z < 0.9 CASCADE (x1.05) 10² 10

DIS

 $ep \rightarrow e' + J/\Psi + X$

ightarrow J/ ψ X)/dP $^2_{T,\psi}$ [nb/GeV 2]

dα(γp

inelastic J/Ψ production

 $P_{T,\psi}^2$ [GeV²]

0.3 < z < 0.6

0.6 < z < 0.75

0.75 < z < 0.9

summary

new H1 measurements of inelastic J/Ψ production cross sections

- higher luminosity (HERA II)
 - so far 75% of HERA II luminosity analyzed
 - smaller statistical and systematic errors
- reduced background from diffractive $\Psi(2S)$

CS provides generally good description of data

- when using kt-factorization or NLO
- no significant color octet contributions required

outlook

J/ Ψ polarization measurement extension to low and high z Ψ (2S) production J/ Ψ from B decays (low z)

aiming for comparisons with up-to-date theory calculations

BACKUP

norm. uncertainties (CSM NLO)

 $\rm m_{_c}$ = (1.4 \pm 0.1) GeV

 $\alpha_{s} = 0.1200 \pm 0.0025$

inelastic J/Ψ production

17 Z

