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Abstract

The lepton-jet momentum imbalance in deep inelastic scattering events offers a useful set of observ-
ables for unifying collinear and transverse-momentum-dependent frameworks for describing high
energy Quantum Chromodynamics (QCD) interactions. We recently performed a measurement of
this imbalance in the laboratory frame using positron-proton collisions from HERA Run II [1]. With
a new machine learning method, the measurement was performed simultaneously and unbinned in
eight dimensions. The results in Ref. [1] were presented projected onto four key observables. This
paper extends those results by showing the multi-differential nature of the unfolded result. In partic-
ular, we present lepton-jet correlation observables deferentially in kinematic properties of the scat-
tering process, Q2 and y. We compare these results with parton shower Monte Carlo predictions as
well as calculations from perturbative QCD and from a Transverse Momentum Dependent (TMD)
factorization framework.
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1 Introduction

Jet measurements in deep-inelastic scattering (DIS) at HERA have provided a powerful tool to explore
quantum-chromodynamics (QCD), including studies to constrain gluon parton-density functions (PDFs)
and to extract the strong coupling constant [2]. While powerful, such measurements have mostly been
limited to the domain of collinear QCD. Theoretical and experimental progress in recent years moti-
vate studying aspects of QCD at high momentum transfer (Q) that go beyond the collinear framework.
In particular, transverse momentum dependent (TMD) PDFs have a more complex evolution than their
collinear counterparts and observables sensitive to TMD PDFs and related quantities will aid the explo-
ration of nucleon structure in multiple dimensions of position and momentum space, as well as quantum
correlation amongst nuclear constituents.

Lepton-jet correlations in DIS have recently been suggested as interesting probes of TMD PDFs and
TMD evolution [3,4]. These jet-based studies complement traditional measurements using single hadrons
(semi-inclusive DIS or SIDIS) by providing observables that can be described theoretically without in-
volving TMD fragmentation functions (FFs). Such decoupling between TMD PDFs and TMD FFs is
currently one of the main challenges for accurate extractions of TMD PDFs with global fits.
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Fig. 1: Left: A display of the H1 tracker (open rectangles) and calorimeter detectors (filled rectangles), showing a
neutral current DIS candidate event involving a single jet in the laboratory frame. Right: A leading order Feynman
diagram illustrating a contribution to the process in the top display.

Previously, we presented measurements of lepton-jet correlations in the laboratory frame for events
Q2 >150 GeV2 [1] using H1 data from HERA Run II. In particular, the result included differential
cross section measurements of the jet transverse1 momentum, psseudorapdiity η , relative transverse
electron-jet momentum imbalance qT/Q, and angular separation in the transverse plane, ∆φ . Analytical
calculations within the TMD framework agree well with the data from low to medium values of qT/Q or
∆φ , whereas collinear perturbative QCD calculations at next-to-next-to-leading order (NNLO) describe
the data well at medium to large values. At intermediate values with qT/Q ∼ 0.5, both frameworks agree
with the data and with each other. Such observations represent a long-sought matching between the two
frameworks [5], which is not observed at lower-energy DIS from fixed target experiments. The data are
also well described by Monte Carlo (MC) event generators, including CASCADE [6] that includes TMD
effects through the parton-branching method.

Multi-differential measurements of lepton-jet observables in DIS over a wide range of Q2 are needed
to fully constrain TMD evolution effects. The measurement in Ref. [1] was performed simultaneously
and unbinned in eight dimensions including the three each for the jet and lepton kinematic properties,
qT/Q, and ∆φ (redundant with the first six). This measurement was enabled by a new machine learning
technique called MULTIFOLD [7,8]. Even though the data were unfolded simultaneously in eight dimen-

1This measurement uses a right handed coordinate system defined such that the positive z direction points in the direction
of the proton beam and the nominal interaction point is located at z = 0. The polar angle θ , is defined with respect to this axis.
The pseudorapidity is defined as ηlab =− ln tan(θ/2).
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sions, the final results of Ref. [1] were presented as four binned differential cross section measurements.
The goal of this paper is to explore the unbinned and multidimensional nature of the previous result.

This note is organized as follows. Section 2 briefly introduces the H1 detector and Sec. 3 lists the
experimental and synthetic datasets used for the analysis. The event reconstruction is described in Sec. 4.
Corrections for detector effects (unfolding) using the MULTIFOLD algorihtm are detailed in Sec. 5. A
discussion of uncertainties is in Sec. 6 and theoretical predictions are described in Sec. 7. Results are
presented in Sec. 8 and the note ends with conclusions and outlook in Sec. 9.

2 H1 Detector

The H1 detector [9–13] is a general purpose particle detector with cylindrical geometry. The main
sub-detectors used in this analysis are the inner tracking detectors and the Liquid Argon (LAr) calorime-
ter, which are both immersed in a magnetic field of 1.16 T provided by a superconducting solenoid.
The central tracking system, which covers 15◦ < θ < 165◦ and the full azimuthal angle, consists
of drift and proportional chambers that are complemented with a silicon vertex detector in the range
30◦ < θ < 150◦ [14]. The tracker yields a transverse momentum resolution for charged particles of
σpT/pT = 0.2% pT/GeV ⊕ 1.5%. The LAr calorimeter, which covers 4◦ < θ < 154◦ and full azimuthal
angle, consists of an electromagnetic section made of lead absorbers and a hadronic section with steel
absorbers; both are highly segmented in the transverse and longitudinal directions. The calorimeter en-
ergy resolution is σE/E = 11%/

√
E/GeV ⊕ 1% for leptons [15] and σE/E ≈ 50%/

√
E/GeV ⊕ 3%

for charged pions [16]. In the backward region (153◦ < θ < 177.5◦), energies are measured with a
lead-scintillating fiber calorimeter [17].

3 Data and Simulated Samples

Data collected for this analysis were collected with the H1 detector in the years 2006 and 2007 when
positrons and protons were collided at energies of 27.6 GeV and 920 GeV, respectively, for a center-of-
mass energy of about

√
s = 320 GeV. The total integrated luminosity of this data sample corresponds to

136 pb−1 [18].

Events in data were selected online using a trigger selecting events with a high energy cluster in the
electromagnetic part of the LAr calorimeter. The scattered lepton is identified with the highest transverse
momentum LAr cluster matched to a track, and is required to pass the isolation criteria described in
Ref. [19]. After fiducial cuts, the trigger efficiency is higher than 99.5% [20, 21] for scattered lepton
candidates with energy Ee′ > 11 GeV. A series of fiducial and quality cuts based on simulations [21, 22]
suppress backgrounds to a negligible level.

Monte Carlo (MC) simulations are used to correct the data for detector acceptance and resolution effects.
Two generators are used for this purpose: DJANGOH [23] 1.4 and RAPGAP [24] 3.1. Both generators im-
plement Born level matrix elements for the neutral current DIS, boson–gluon fusion, and QCD Compton
processes and are interfaced with HERACLES [25–27] for QED radiation. The CTEQ6L PDF set [28]
and the Lund hadronization model [29] with parameters fitted by the ALEPH Collaboration [30] are
used for the non-perturbative components. DJANGOH uses the Colour Dipole Model as implemented in
ARIADNE [31] for higher order emissions, and RAPGAP uses parton showers in the leading logarithmic
approximation.

Each of these generators is combined with a detailed simulation of the H1 detector response based on the
GEANT3 simulation program [32] and reconstructed in the same way as data.
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4 Event Reconstruction

DIS reactions are governed by Q2 and the inelasticity y, or equivalently, the longitudinal momentum
fraction x = Q2/(sy). We use the Σ method [33] to reconstruct Q2 and y as:

Q2 =
E2

e′
sin2

θe′

1− y
(1)

y =
∑i∈had(Ei − pi,z)

∑i∈had(Ei − pi,z)+Ee′ (1− cosθe′ )
, (2)

where θe′ is the polar angle of the scattered lepton and ∑(Ei − pi,z) is the total difference between the
energy and longitudinal momentum of the entire hadronic final state. Compared to other methods, the
Σ reconstruction reduces sensitivity to collinear initial state Quantum Electrodynamic (QED) radiation,
e → eγ , since the beam energies are not included in the calculation.

The FASTJET 3.3.2 package [34, 35] is used to cluster jets in the laboratory frame with the inclusive
kT algorithm [36, 37] and distance parameter R = 1. The inputs for the jet clustering are hadronic final
state (HFS) objects with −1.5 < ηlab < 2.75. These objects are built from calorimeter-cell clusters and
reconstructed tracks, after removing those associated with the scattered lepton, using an energy flow
algorithm [38–40]. Jets with transverse momentum pjet

T > 5 GeV are selected for further analysis.

The input for the jet clustering at the generator level (“particle level”) are final-state particles with
proper lifetime cτ > 10 mm generated with RAPGAP or DJANGOH, excluding the scattered lepton. Re-
constructed jets (reco) are matched to the generated jets (gen) with an angular distance selection of
∆R2 = (φ

jet
gen −φ

jet
reco)

2 +(η
jet
gen −η

jet
reco)

2 < 0.92.

Events with Q2 > 150 GeV2, 0.08 < y < 0.7, and at least one jet participate in the unfolding (Sec. 5).
The final measurement is presented in a fiducial volume defined by Q2 > 150 GeV2, 0.2 < y < 0.7, pjet

T >

10 GeV, and −1.0 < η
jet
lab < 2.5; the total inclusive jet cross section in this region is denoted σjet.
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5 Unfolding

The MULTIFOLD method is an iterative two-step procedure to correct for detector effects as illustrated
in Fig. 2 illustrates this MULTIFOLD. The goal is to infer the top right box (particle-level data) using
detector-level data (top left box) and simulations (lower boxes). The components of MULTIFOLD are
explained in more detail below.
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Fig. 2: A schematic diagram of the MULTIFOLD method. The top row represents data (‘Nature’) while the second
row depicts synthetic datasets from MC simulation. The goal is to infer the top right box given the other three
boxes. MULTIFOLD is an iterative two-step procedure. The first step uses detector-level inputs (left column) while
the second step uses particle-level inputs (right column). Adapted from Ref. [7].

Let x⃗ = (pe
x, pe

y, pe
z , pjet

T ,η jet,φ jet,qjet
T /Q,∆φ jet). The goal is to make a cross section measurement that is

differential in x⃗. Note that from x⃗, one can extract Q by using qT computed from the first six components
of x⃗, q⃗T = p⃗e

T − p⃗jet
T . Additionally, y can be computed using Q, the lepton kinematic properties, and Eq. 1.

Symbolically:

Q2 =
(qjet

T )2

(qjet
T /Q)2

=
(pe

x + pjet
T cos(φ jet))2 +(pe

y + pjet
T sin(φ jet))2

(qjet
T /Q)2

(3)

and

y = 1− E2
e sin2

θe

Q2

= 1−
((pe

x)
2 +(pe

y)
2 +(pe

z)
2 +m2

e)
(

(pe
x)

2+(pe
y)

2

(pe
x)

2+(pe
y)

2+(pe
z)

2

)2

Q2 . (4)
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Even though Eq. 3 and 4 follow directly from the definitions of Q2 and y, it is useful to express them
in terms of x⃗ to illustrate that they are non-trivial functions of the measured phase space. Deriving
measurements of Q2 and y or other observables as a function of Q2 and y (if these observables were not
directly present in the original phase space) would not be possible with binned unfolding techniques.

The first step of MULTIFOLD uses observables at detector level while the second step operates at particle
level. Define Xdata = {⃗xi} be the set of events in data and XMC,gen = {⃗xgen,i} and XMC,reco = {⃗xreco,i} be
sets of events in simulation with a correspondance between the two sets. In simulation, we have a set of
observables at particle-level and detector-level for each event. If an event does not pass the particle-level
or detector-level event selection, then the corresponding set of observables are assigned a dummy value
x⃗ = /0. Each event i in simulation is also associated with a weight wi from the MC simulation.

MULTIFOLD achieves an unbinned unfolding by iteratively reweighting the particle-level events. Each
event i in simulation is given a weight νi and these weights are updated at each iteration. The final result
is the simulated events with weights νiwi. From these events, one can compute new observables defined
on x⃗ and can construct histograms or other summary statistics. The MULTIFOLD weights are initialized
at νi = 1, i.e. the prior is the initial MC simulation.

The first step of MULTIFOLD is to train a classifier f to distinguish the weighted simulation at detector-
level from the data. The classifier is trained to maximize the common binary cross entropy:

∑
x⃗i∈Xdata

log( f (⃗xi))+ ∑
x⃗i∈XMC,reco

νi wi log(1− f (⃗xi)) , (5)

where both sums only include events that pass the detector-level selection. For events that pass the
detector-level selection, define λi = νi × f (⃗xi)/(1− f (⃗xi)) for x⃗i ∈ XMC,reco. This manipulation of the
classifier output is known (see e.g. Ref. [41, 42]) to produce an estimate of the likelihood ratio between
data and simulation. For events that do not pass the detector-level selection, λi = νi.

The second step of MULTIFOLD is a regularization step. The weights λi are insufficient because they
are not a proper function of the particle-level phase space. In other words, a single phase space point
x⃗gen can be mapped to different x⃗reco values under the stochastic detector response. The second step of
MULTIFOLD averages the weights λ for a fixed particle-level phase space point. This is accomplished
by training a classifier to distinguish the particle-level simulation weighted by ν from the particle-level
simulation weighted by λ . The loss function is once again the binary cross entropy:

∑
x⃗i∈XMC,truth

λi wi log( f (⃗xi))+νi wi log(1− f (⃗xi)) , (6)

where the sum only includes events that pass the particle-level selection. For events that pass the particle-
level selection, define νi = νi × f (⃗xi)/(1 − f (⃗xi)) for x⃗i ∈ XMC,truth. For events that do not pass the
particle-level selection, νi is left unchanged from its previous value.

The classifiers for Steps 1 and 2 are parameterized as fully connected deep neural networks. These
networks are implemented in TENSORFLOW [43] and KERAS [44] and optimized using ADAM [45]. The
input layer to the neural networks has 8 nodes, corresponding to the 8 dimensions of x⃗ used for unfolding.
All inputs are standardized so that each dimension of x⃗ has mean zero and unit standard deviation.
Following the input, there are three hidden layers, with 50, 100, and 50 nodes, respectively. Each layer
has a rectified linear unit activation function and the network output is a single node with the sigmoid
activation function. None of these hyperparameters were optimized and all other hyperparemeters are
set to their default values. In particular, the network biases are all initialized to zero and the weights are
initilaized using the Glorot uniform distribution [46]. In order to minimize variations from the stochastic
nature of the training procedure, we train 10 networks for each configuration and the final result is taken
as the median over the 10 values per event.
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For training, the inputs are partitioned equally into a training and validation set. This partition is random
and redone at each iteration. Training proceeds for 10,000 epochs with an early stopping mechanism
that halts training if the validation loss does not decrease for 10 consecutive epochs. Step 1 training uses
a batch size of 50,000 events and a learning rate of 2× 10−6, while step 2 training uses a batch size of
100,000 events and a learning rate of 5× 10−6. The networks are trained using NVIDIA Quadro RTM
6000 Graphical Processing Units (GPUs). These GPUs have sufficient memory (24 GB) to simultane-
ously fit all of the inputs and the model into memory. The training time for both Step 1 and Step 2
decreases with each iteration since the MC at particle level is reweighted to successively better match the
data with each iteration. For instance, the first iteration of Step 1 takes 3350 seconds and Step requires
2500 seconds. In the fifth iteration, Step 1 only takes 660 seconds and Step 2 requires 540 seconds.
Unfoldings stops after the fifth iteration after which changes in the weights are negligible.

Learning curves showing the average loss as a function of the epoch number are shown in Fig. 3. The
required number of epochs for training decreases with more iterations and Step 2 requires fewer iterations
than Step 1. The overall loss values increase with more iterations as the reweighted simulation looks more
like the data at the start of each step. Correspondingly, the amount of learning at each step, quantified by
the drop in average loss, decreases at each iteration.

Representative observable distributions corresponding to Fig. 3 are shown in Fig. 4. In particular, his-
tograms of η jet are depicted at various stages of the unfolding for the first and last MUTLIFOLD it-
erations. The left plots show η jet at detector level while the right plots correspond to η jet at particle
level. Due to the asymmetry of the lepton-proton collisions, the jets are more likely to be in the forward
(η > 0) direction compared to the backwards (η < 0) direction. The dashed solid line in the ratio panel
of Fig. 4(a) shows the starting data/MC ratio. This ratio is a few percent high in the backwards direction
and up to 20% low in the forward direction. After the Step 1 reweighting (dotted ratio), the ratio is
within 1% of unity across the entire spectrum. For Step 2 of the first iteration (Fig. 4(b)), the dashed
ratio indicates the difference between the intial MC and the MC with weights from Step 1. By design,
this ratio is similar to the dashed ratio in Fig. 4(a). After the Step 2 averaging step, the reweighted MC
is within 1% of unity for all bins except the last bin, where the agreement is at the 5% level. At the fifth
iteration, the weighted MC at the beginning of Step 1 (dashed ratio) is already quite close to unity across
the spectrum (Fig. 4(c)). The 10% disagreement in the last bin is brought to unity with the reweighting.
The final weights of Step 2(Fig. 4(d)) are within 1% of unity across the entire spectrum. Note that for
Step 2, we reweight the original MC (weights wi) to the version with weights from Step 1 (weights λiwi).
Another option is to learn an incremental weight with respect to the previous Step 2. We explored both
options and found a similar closure. Learning one reweighting is practically easier because it does not
require multiplying together many weights.
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Fig. 3: Training and validation loss as a function of training epoch for the first and last unfolding iterations. (a)
and (b) are for the first iteration of MULTIFOLD while (c) and (d) represent the last unfolding iteration. (a) and
(c) show the loss for Step 1 and (b) and (d) show the loss for Step 2. The training is allowed to proceed for up to
10,000 epochs, but is truncated early if the validation loss does not decrease for ten consecutive epochs.



8 H1 Collaboration

1 0 1 20.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
to

 u
ni

ty

H1 Preliminary
MultiFold iteration 0, step 1

Data
MC + step 2 (i-1)
MC + step 1 (i)

1 0 1 2
Detector-level jet

0.8
1.0
1.2

M
C/

da
ta

(a)

1 0 1 20.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
to

 u
ni

ty

H1 Preliminary
MultiFold iteration 0, step 2

MC + step 1
MC
MC + step 2

1 0 1 2
Particle-level jet

0.8
1.0
1.2

st
ep

 2
/s

te
p 

1

(b)

1 0 1 20.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
to

 u
ni

ty

H1 Preliminary
MultiFold iteration 4, step 1

Data
MC + step 2 (i-1)
MC + step 1 (i)

1 0 1 2
Detector-level jet

0.8
1.0
1.2

M
C/

da
ta

(c)

1 0 1 20.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
to

 u
ni

ty

H1 Preliminary
MultiFold iteration 4, step 2

MC + step 1
MC
MC + step 2

1 0 1 2
Particle-level jet

0.8
1.0
1.2

st
ep

 2
/s

te
p 

1

(d)

Fig. 4: The binned η jet distribution after the same four iterations and steps as in Fig. 3. In particular, (a) and (b)
are for the first iteration of MULTIFOLD while (c) and (d) represent the last unfolding iteration. (a) and (c) show
the distribution for Step 1 and (b) and (d) show the distributions for Step 2. The filled histograms in (a) and (c)
represent the observed data while the filled histograms in (b) and (d) represent the particle-level MC with weights
λiwi. Solid unfilled histograms correspond to the starting MC for the given iteration and step. For Step 1, these
initial weights are νiwi, for νi from the previous step; for Step 2, the initial weights are simply wi. Dashed unfilled
histograms correspond to the final weighted MC for the given iteration and step. For Step 1, these final weights
are λiwi; for Step 2, the final weights are νiwi. Ratio panels show the ratio with respect to the target for the given
step. In Step 1, the goal is to match the data while in Step 2, the goal is to match the results from Step 1.
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6 Uncertainties

Statistical uncertainties are determined using a bootstrapping technique [47]. In particular, the entire
unfolding procedure is repeated 100 times. For each time, data events are given a weight that is dis-
tributed as a Poission random variable with mean 1. This is analogous to creating 100 pseudo datasets
by resampling the original dataset with replacement. The number of MC events exceeds the number of
data events by nearly two orders of magnitude and therefore the MC statistical uncertainty is negligible
compared to the corresponding data uncertainty. Due to the ensembling procedure described in Sec. 5,
variations from the random nature of the network initialization and training is negligible compared to the
data statistical uncertainty.

Systematic uncertainties are determined by varying an aspect of the simulation and repeating the unfold-
ing. The variations used in this measurement follow other recent H1 analyses [21, 22] and are briefly
summarized in the following.

The HFS-object energy scale uncertainty is decomposed into two parts, one from HFS objects con-
tained in high pT jets and one from all other HFS objects. In both cases, the energy-scale uncertainty is
±1% [21, 48]. Both uncertainties are estimated separately by varying the corresponding HFS energy by
±1%. The uncertainty of the measurement of the azimuthal angle of the HFS objects is ±20 mrad. The
uncertainty of the measurement of the energy of the scattered lepton ranges from ±0.5% at backward
and central regions [49] to ±1% at forward regions [21].

The uncertainty of the measurement of the azimuthal angle of the scattered lepton is ±1 mrad [20].
The uncertainty associated with the modeling of the hadronic final state in the event generator used
for unfolding and acceptance corrections is estimated by the difference between the results obtained
using DJANGOH and RAPGAP. Given that the differential cross sections are reported normalized to
the inclusive jet cross section, normalization uncertainties such as luminosity scale or trigger efficiency
cancel in the ratio.

The bias of the unfolding procedure is determined by taking the difference in the result when unfolding
with RAPGAP and with DJANGOH. This procedure gives a consistent result to unfolding detector-level
RAPGAP with DJANGOH (and vice versa). We found that unfolding RAPGAP with itself using statisti-
cally independent samples is unbiased within MC statistical uncertainties. The RAPGAP and DJANGOH

distributions bracket the data and have rather different underlying models. Therefore, comparing the
results with both generators provides a realistic evaluation of the procedure bias.

The statistical uncertainty is subdominant in all bins except the highest Q2 bin where it reaches 20%.
The lepton energy scale is the largest experimental uncertainty, which is comparable to the statistical
uncertainty at high Q2. The HFS in jet scale and model uncertainties are about 1% below Q2 = 104

GeV2. There is no region of the y range that is as statistically limited as for the Q2 spectrum. The model
and lepton energy scale uncertainties reach about 2% and are larger than the other uncertainties in all
bins except for the highest y values.

For pjet
T , the HFS in jet scale is mostly the largest experimental uncertainty, although the lepton energy

scale also plays a role at lower pjet
T and moderate/high Q2. The model uncertainty is largest in the highest

pjet
T bins. The model and lepton energy scale uncertainties are most important for η jet and ∆φ jet, which

are mostly between 2-5%. The model uncertainty is most important for qjet
T /Q, where it is mostly less

than about 5% except in the highest bin.
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7 Theory Predictions

The unfolded data are compared with Parton Shower MC, fixed-order calculations within perturbative
QCD (pQCD), and calculations within the TMD factorization framework.

In addition to RAPGAP and DJANGOH MC predictions described in Sec. 3, the data are also compared
with predictions from PYTHIA 8.3 [50, 51] and Cascade [6]. Unless stated otherwise, the default pa-
rameters for each simulation are used to generate events. The PYTHIA 8.3 predictions are produced
with three flavors. The first one (default) uses a pT -ordered parton pweron shower, the Lund string
hadronization, and the NNPDF 3.1 PDF set [52]. Another PYTHIA variation uses instead the VIN-
CIA parton shower [53], with pT -ordered 2 → 3 branchings. The third PYTHIA flavor uses the DIRE

parton shower [54], which implements a pT -ordered parton shower based on dipoles. CASCADE is
a TMD-based MC program that uses matrix elements from KATIE [55] and parton branching TMD
PDFs [56–58]. CASCADE is also produced with two flavors. The first setup uses the HERAPDF2.0 PDF
set [59] and the second variation uses angular ordering and pT as the renormalization scale [60, 61].

Perturbative QCD calculations at next-to-next-to-leading order (NNLO) accuracy in QCD are obtained
with the POLDIS code [62,63], which is based on the Projection to Born Method [64]. These calculations
are multiplied by hadronization corrections obtained with the default PYTHIA 8.3 setup. Uncertainties on
the hadronization corrections are estimated by taking the envelope of the corrections obtained with the
default, VINCIA and DIRE simulations. These corrections are smaller than 10% for most kinematic in-
tervals. The uncertainty of the calculations is given by the variation the factorization and renormalization
scale Q2 by a factor of two [62, 63] as well as NLOPDF4LHC15 variations [65].

The TMD calculation employs the framework developed in Refs. [3,66] using the same jet radius and al-
gorithm used in this work. This differs from the original Refs. [3] paper used the anti-kT algorithm. The
difference is power suppressed at the accuracy of the calculation. The inputs to the TMD calculation are
are TMD PDFs and soft functions derived in Ref. [67], which were extracted from an analysis of SIDIS
and Drell-Yan data. The calculation is performed at the next-to-leading logarithmic accuracy. This cal-
culation is performed within TMD factorization and no matching to the high qT region is included, where
the TMD approach is expected to be inaccurate. In contrast to pQCD calculations, the TMD calculations
do not require non-perturbative corrections, because such effects are already included. Uncertainties are
not yet available for the TMD predictions.

8 Results

The unfolded inclusive spectra of Q2 and y are shown in Fig. 5. Both Q2 and y exhibit steeply falling
distributions that are well-described by RAPGGAP and DJANGOH. A slope in the ratio of the y distribu-
tion for DJANGOH at the 10% per unit rigidity level is visible in the ratio plot of Fig. 5(b). The statistical
uncertainty is as large or larger than the systematic uncertainties in the last two Q2 bins and is smaller
than the systematic uncertainties below Q2 ≈ 104 GeV2. The last bin of the y distribution inside the
fiducial volume has a sufficient number of events so that the statistical uncertainty is not large.

Distributions of pjet
T , η jet, qjet

T /Q, and ∆φ jet in bins of Q2 and y are presented in Figs. 6-8 and compared
with various predictions. The jet pT, qT/Q, and ∆φ spectra are all steeply falling while the jet η peaks
near 0 and is asymmetric due to the asymmetry of the colliding beams. As in the inclusive measurement
from Ref. [1], no one prediction describes the data everywhere, although a number of calculations are
able to model the data well over a wide kinematic range. The disagreements observed in inclusively in
Ref. [1] become more pronounced as we examine the phase space differentially. In Figs. 9-11 the data
are confronted with three variants of the PYTHIA predictions.

Direct comparisons between Q2 and y bins are enabled by overlaying the unfolded spectra in Figs. 12
and 13, respectively.
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Fig. 5: The unfolded (a) Q2 and (b) y distributions, compared with various predictions.
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Fig. 6: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a)
the jet transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d)
the lepton-jet azimuthal angle correlation (∆φ jet) for 150 < Q2/GeV2 < 237. At the bottom, the ratio between
predictions and the data are shown. The gray bands represent the total systematic uncertainty of the data; the bars
represent the statistical uncertainty of the data, which is typically smaller than the marker size.
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Fig. 7: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a) the jet
transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d) the lepton-
jet azimuthal angle correlation (∆φ jet) for 237 < Q2/GeV2 < 346.5. At the bottom, the ratio between predictions
and the data are shown. The gray bands represent the total systematic uncertainty of the data; the bars represent
the statistical uncertainty of the data, which is typically smaller than the marker size.
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Fig. 8: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a) the
jet transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d) the
lepton-jet azimuthal angle correlation (∆φ jet) for 346.5 < Q2/GeV2 < 51932. At the bottom, the ratio between
predictions and the data are shown. The gray bands represent the total systematic uncertainty of the data; the bars
represent the statistical uncertainty of the data, which is typically smaller than the marker size.
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Fig. 9: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a)
the jet transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d)
the lepton-jet azimuthal angle correlation (∆φ jet) for 150 < Q2/GeV2 < 237. At the bottom, the ratio between
predictions and the data are shown. The gray bands represent the total systematic uncertainty of the data; the bars
represent the statistical uncertainty of the data, which is typically smaller than the marker size.



16 H1 Collaboration

101 102

10−6

10−5

10−4

10−3

10−2

10−1

1/
σ

je
t

d
σ
/d
pje

t
T

[1
/G

eV
]

H1 Preliminary

237 < Q2/GeV2 < 346.5
0.2 < y < 0.7
pjet

T > 10 GeV
kT, R = 1.0

H1 Data

Pythia 8.3

Pythia Dire 8.3

Pythia Vincia 8.3

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker offsets added for clarity

(a)

−1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
σ

je
t

d
σ
/d
η

je
t

H1 Preliminary

237 < Q2/GeV2 < 346.5
0.2 < y < 0.7
pjet

T > 10 GeV
kT, R = 1.0

H1 Data

Pythia 8.3

Pythia Dire 8.3

Pythia Vincia 8.3

−1 0 1 2

ηjet

0.5

1.0

1.5
M

od
el
/

D
at

a
artificial horizontal marker offsets added for clarity

(b)

10−2 10−1 100

10−6

10−5

10−4

10−3

10−2

10−1

100

1/
σ

je
t

d
σ
/d
qje

t
T
/Q

H1 Preliminary

237 < Q2/GeV2 < 346.5
0.2 < y < 0.7
pjet

T > 10 GeV
kT, R = 1.0

H1 Data

Pythia 8.3

Pythia Dire 8.3

Pythia Vincia 8.3

10−2 10−1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker offsets added for clarity

(c)

10−2 10−1 100

10−2

10−1

100

1/
σ

je
t

d
σ
/d

∆
φ

je
t

H1 Preliminary

237 < Q2/GeV2 < 346.5
0.2 < y < 0.7
pjet

T > 10 GeV
kT, R = 1.0

H1 Data

Pythia 8.3

Pythia Dire 8.3

Pythia Vincia 8.3

10−2 10−1 100

∆φjet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker offsets added for clarity

(d)

Fig. 10: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a)
the jet transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d)
the lepton-jet azimuthal angle correlation (∆φ jet) for 237 < Q2/GeV2 < 346.5. At the bottom, the ratio between
predictions and the data are shown. The gray bands represent the total systematic uncertainty of the data; the bars
represent the statistical uncertainty of the data, which is typically smaller than the marker size.
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Fig. 11: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a) the
jet transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d) the
lepton-jet azimuthal angle correlation (∆φ jet) for 346.5 < Q2/GeV2 < 51932. At the bottom, the ratio between
predictions and the data are shown. The gray bands represent the total systematic uncertainty of the data; the bars
represent the statistical uncertainty of the data, which is typically smaller than the marker size.
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Fig. 12: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a) the
jet transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d) the
lepton-jet azimuthal angle correlation (∆φ jet) in three bins of Q2. Data in higher Q2 regions are vertically offset in
the plots to improve clarity. Only unfolded data is presented, while the systematic uncertainty is denoted by the
corresponding color-shaded box. The statistical uncertainty is given by the vertical colored bars attached to the
data point. However, it is not visible in most plots since it is smaller than the size of the data marker.
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Fig. 13: Measured cross sections, normalized to the inclusive jet production cross section, as a function of (a) the
jet transverse momentum, (b) the jet pseudorapidity, (c) the lepton-jet momentum balance (qjet

T /Q), and (d) the
lepton-jet azimuthal angle correlation (∆φ jet) in three bins of y. Data in higher y regions are vertically offset in
the plots to improve clarity. Only unfolded data is presented, while the systematic uncertainty is denoted by the
corresponding color-shaded box. The statistical uncertainty is given by the vertical colored bars attached to the
data point. However, it is not visible in most plots since it is smaller than the size of the data marker.



20 H1 Collaboration

9 Conclusions

This paper has reported multi-differential cross section measurements of the laboratory frame jet-lepton
imbalance in neutral current DIS events collected with the H1 detector at HERA. Using the same machine
learning-based unfolding as in Ref. [1], we show the differential nature of the result by presenting the four
observables from Ref. [1] in bins of Q2 and y. While Q2 and y were not part of the original phase space,
they can be derived from the measurement. As the result is unbinned, there are no artifacts from the
indirect Q2 and y measurements. We compare the data to a number of predictions and while we find that
no one calculation can describe the data everywhere, a number of predictions are able to accurately model
the data across a wide kinematic range. These data will be provide an important input to connecting
perturbative QCD and TMD calculations in a unified framework and they also represent an important
methodological step towards publishing unbinned differential cross section measurements [68].
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