Electroweak Physics at HERA

HERA-1

Days of running

Trong Hieu Tran, on behalf of the H1 Collaboration (1) International Conference on High Energy Physics 2010 Palaís des Congrès, París

HERA collider

The unique ep collider, HERA, located at Hamburg, Germany, running 1994-2007, allowed the measurement of the Standard Model parameters and the neutral current couplings of quarks using DIS (Deep Inelastic Scattering) data at a center-of-mass energy of 319 GeV.

Two colliding experiments: H1 and ZEUS.

Coupling of light quarks to Z⁰ boson

Deep inelastic scattering

Charged current total cross section

(*) F.D. Aaron et al. [H1 Collaboration and ZEUS Collaboration] JHEP 1001 (2010) 109.

Weak interaction affects only left-handed particles charged current cross sections vary linearly as a function of polarization.

(*) C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C30 (2003), 1–2. C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C13 (2000), 609-39. C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C19 (2001), 269-88.

Polarization asymmetry

Polarization asymmetry is defined from e⁻p and e⁺p, left-handed and right-handed neutral current cross sections as

$$A = \frac{2}{P_R - P_L} \cdot \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)}.$$

for polarized and published unpolarized data samples (*)

W-boson polarization fraction

Measurement based on isolated lepton sample in which a W-boson is produced. The $\cos \theta^*$ in decay $W \to e/\mu + v$ is exploited, where θ^* is the angle between W-boson momentum in the lab frame and that of the charged decay lepton in the W rest frame.

cross section.

The left-handed and longitudinal

W-boson production single differential

 $\frac{1}{\sigma_{W\to\ell+\nu}} \frac{\mathrm{d}\sigma_{W\to\ell+\nu}}{\mathrm{d}\cos\theta^*} = \frac{3}{4} F_0 \left(1 - \cos^2\theta^*\right) + \frac{3}{8} F_- \left(1 - \cos\theta^*\right)^2 + \frac{3}{8} F_+ \left(1 + \cos\theta^*\right)^2$

 F_- : left-handed polarization fraction F_0 : longitudinal fraction F_+ : right-handed fraction, $F_+ \equiv 1 - F_- - F_0$

Single differential cross section as a function

of $q_l \cos \theta^*$ for on-shell *W*-boson

Plane showing the fit result for the simultaneously extracted left handed (F_{-}) and longitudinal (F_{0}) *W*-boson polarization fraction (point) with the corresponding 68% and 95% CL contours

F.D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 64 (2009) 251

Single W-boson production

Approximately, A can be expressed in terms of structure functions:

At high Q^2 , the difference between A values for e⁺p and e⁻p interaction becomes important due to the Z-boson exchange.

The results are found to be in good agreement with the Standard Model expectation determined from H1PDF 2009 fit (*)

 Q^2 dependence of polarization asymmetry for e⁻p and e⁺p data compared to the prediction of the Standard Model

(*) F. D. Aaron et al. [H1 Collaboration], Eur. Phys. J C64 (2009), 561.

Single *W*-boson production can occur at HERA through either neutral or charged current like interactions: $ep \rightarrow eWX$ or $ep \rightarrow vWX$

Two dominant processes are:

The total single *W*-boson production cross section at HERA is measured as:

 $\sigma_w^{data} = 1.06 \pm 0.16 \text{ (stat.)} \pm 0.07 \text{ (sys.) pb}$ The measured cross section is in good agreement with the Standard Model expectation of 1.26 ± 0.19 pb.

F.D. Aaron et al. [H1 Collaboration and ZEUS Collaboration], JHEP 1003 (2010) 035.

The single *W*-boson production cross section as a function of the hadronic transverse momentum measured using the combined H1 and ZEUS data at a center-of-mass energy of 319 GeV.