Physics Results from the H1 Experiment at HERA

Inclusive Measurements

Hadronic Final States

cross

without

New parton dynamics, characterized by an initial state cascade which is non-ordered in parton virtuality, are expected to become important in the kinematic region of small Biorken x in ep attering at HERA. H1 studies events with a forward jet, a region which typically lies away from the photon end of the evolution ladder. The figure on the left displays the hadron level triple differential cross section as a function of x in bins of Q^2 and $p_{t,jet}^2$ The data are compared to the prediction of NLO calculations, where the coloured band illustrates the scale uncertainty in the calculations; the band following the data points indicates the energy scale uncertaint

Deep inelastic e⁺p scattering data taken with the H1 detector at HERA are used to investigate jet production over a range of four momentum transfers $150 < Q^2 < 15000$ GeV² and transverse jet energies $5 < E_T < 50$ GeV. The ratio of the tri-jet to the di-jet cross section is used to extract the value and evolution of the strong coupling constant as a function of Q2, as shown on the right. The value of the strong coupling constant determined from the study is 0.1175 ± 0.0017 (stat.) ± 0.0050 (syst.) $\pm 0.0054 - 0.0068$ (theory), which compares well with the world average.

Diffraction

Rare Processes and Searches

H1 performs measurements of differential dijet cross sections in low-|t| diffractive photoproduction (Q² < 0.01 GeV²) and deep inelastic scattering (Q² > 4 GeV²). The measurements of rates in photoproduction and DIS are compared with NLO QCD predictions based on diffractive parton distributions previously obtained from a NLO QCD analysis of inclusive diffractive DIS. Whereas the diffractive dijet rate in DIS is in good agreement with QCD factorisation, the dijet rate in photoproduction is suppressed by about a factor 0.5 compared to the NLO QCD prediction, as can be seen in the figure on the left. The preliminary results are suggestive of a breakdown of factorisation in photoproduction for both direct and resolved photon interactions

H1 6t 2002

Q²>200.0, y<0.9, x₁₀<0.0

log(Q²)

35 -t (GeV²)

Total and differential charged current cross sections in Q2 (shown on the right), x_{pem} and beta are measured by H1 in the kinematic range Q² > 200 GeV², y <0.9 and $x_{pem} < 0.05$ and compared to a model where diffractive parton densities are extracted from fits to reutral current data at lower Q². The ratio of the diffractive fraged current emissions in the inductive diffractive fraged current emission in the inductive diffractive fraged current emission. charged current cross-section to the inclusive charged current cross-section is measured to be 2.5 ± 0.8 (stat.) ± 0.6 (syst.) %.

> The diffractive photoproduction of rho mesons with large momentum transfer, is measured at H1. The measured t dependence of the cross section is shown on the left compared to a BFKL model. The diffractive photoproduction of high P_T photons is also measured at H1. The differential cross section as a function of -t is shown on the right and compared to a leading log BFKL model with different values of the strong

The elastic deeply virtual Compton scattering process is measured by H1 in the kinematic range $2 < Q^2 < 80$ GeV², 30 < W < 140 GeV and |t| < 1 GeV². The measured cross section is shown as a function of W on the left, where the data are compared the ZEUS measurement and to NLO QCD predictions.

đ