The HERA Experiments in the Year 2000

The Case for High Luminosity at HERA

Example: Unexpectedly High Cross Section at High x and Q^{2}
\qquad Candidate from CC sample
$\mathrm{Q}^{2}=34000 \mathrm{GeV}^{2}, \mathrm{y}=0.65, \mathrm{x}=0.58$

HERA is unique in probing the proton at smallest distances, via exchange of electroweak gauge bosons: 4 -momentum transfer spatial resolution $\Delta r=10^{-18} \mathrm{~m}$. $=10^{-18} \mathrm{~m}$

At highest $Q^{2}\left(>15,000 \mathrm{GeV}^{2}\right)$, more events than expected - based on our knowledge of structure functions at low Q^{2} and on $Q C D$

- are observed by both HI and ZEUS The signature of the events is the same as in "standard" deep inelastic scattering mental systematics or by uncertainties in the prediction. However, it could still be just a statistical fluctuation
Only with higher statistics can the nature of the excess be clarified. Important addilitiona constraints on possible explanations can result from e^{-}compared to e^{+}scattering
and from the use of polarized beams.

The broad physics potential of the HERA luminosity upgrade was studied in the Workshop on "Future Physics at HERA"

H1 and ZEUS

Detector Upgrade Options

(17)

Robust z Vertex Chamber and Trigger
DAQ upgrade
Forward Tracking upgrade - complement
existing Central \& Backward Silicon Tracker

W/

4s
 Forward and Central Silicon Tracker

The HERA Spin Programme

Spin Rotators at H1 and ZEUS

Electro-weak Physics

 Through the availability of all 4 charge and spin states of the electron, HERA combines the virtues of both $\mu \mathrm{N}$ and $v \mathrm{~N}$ scat tering experiments.for each charge and spin state the cross sections depend in a different manner on electro-weak parameters. HERA a different manner on electro-weak parameters. HERA
measurements are similar to a determination of the muon ${ }^{\text {decay }}$ constant G_{μ} but probe the region of large space-like Q^{2}. They will put rather stringent constraints on m_{+}and m_{W}.

A unique test of the Standard Model - with no equivalent in neutrino beam experiments - consists of the verification that

