

Heavy Quark Production

Andreas B. Meyer DESY

Introduction Experiments Recent Results Photon Structure Quarkonia

Experiments

Andreas B. Meyer, DESY

Heavy Quark Production

Heavy Quark Identification Distinguish charm and beauty from uds events (->trigger!)

- Full (or partial) resonance reconstruction (previous slide)
- Lifetime tag (displaced vertices, impact parameter)
- Mass tag (pt^{rel}, jet- or vertex mass)
- Lepton tag (leading particles from hq-decays)
- Two-quark correlations

Jet axis

 p_t^{rel}

Andreas B. Meyer, DESY

Heavy Quark Production

Photon 2005, 1 Sept 2005, Warsaw, Poland

HQ Production Processes (LO)

Boson-boson fusion:

HERA, LEP: additional important contributions due to hadronic structure of the photon Flavour creation from virtual boson (γ , Z⁰, g)

Also: charm from B-decays

4

c, b

c, **b**

QCD Predictions

Factorization: Proton and/or Photon Structure \otimes Perturbative QCD \otimes Fragmentation

Perturbative QCD:

Heavy quark mass provides a hard scale $m_{c,b}^2$ Other scales: $Q^2, p_t^2 \rightarrow multiscale$ problem Interplay between the different scales ?

Non-perturbative components (input pdfs, fragmentation): Assume (and possibly test) universality

Consistent picture between ee, ep, γp , $\gamma \gamma$, $p\bar{p}$? Want/need predictive power for new phenomena (e.g. LHC)

Andreas B. Meyer, DESY

Heavy Quark Production

Photon 2005, 1 Sept 2005, Warsaw, Poland

Calculations

Different approximations to avoid large terms $[\alpha_s \ln(\mu^2/m_c^2)]^n$ with $\mu^2 = Q^2$ or p_t^2

massive scheme:
c,b: dynamically produced

massless scheme: c,b: partons in proton or photon

neglect
$$[\alpha_s \ln(\mu^2/m_c^2)]^n$$
 valid at $\mu^2 \approx m_c^2$

resum $[\alpha_s \ln(\mu^2/m_c^2)]^n$ valid at $\mu^2 \gg m_c^2$

Variable FNS (e.g. MRST04, CTEQ6HQ, FONLL): Interpolate / match between massive and massless

Programs: NLO parton level or LO+PS hadron-level MC (DGLAP or CCFM) Recent developments: MC@NLO NLO+PS, hadron-level Monte Carlo (for pp̄), S.Frixione, B.R.Webber, 2002 NNLO predictions for F2^{cc} and F2^{bb} from fit to scaling violations R.Thorne, 2005

Beauty Cross Sections

HERA:

Many new measurements Overall agreement between different measurements General trend to be somewhat higher than massive NLO

Large differences between different QCD calculations

Tevatron:

Very high statistics Run-II data Theory improvements for pp (FONLL and MC@NLO): mainly better treatment of fragmentation and hadronisation

8

Andreas B. Meyer, DESY

m_=1.3 GeV.....

m_=5.0 GeV

√s (GeV)

100

c ok, b significant excess

50

direct

bb

150

200

m_=1.7 GeV-

Charm and Beauty Structure Functions

Very precise charm data cf. P.Thompson using photon to probe proton structure confirming boson-gluon fusion picture starting to help constrain gluon distribution

First determination of inclusive ep beauty cross section scaling violations seen (F_2^{bb} e.g. required for LHC, $b\bar{b} \rightarrow H$)

9

Photon Structure

Photon reveals hadronic component

Distinguish between direct and resolved contributions (leading order picture)

HERA: Use proton to investigate photon: How much charm and beauty is there in the photon?

Charm in the Photon B 18 14

Distinguish direct and various resolved contributions

In charmed di-jet events reconstruct momentum fraction of parton from photon side:

$$x_{\gamma}^{obs} = \frac{\sum_{j_1, j_2} (E_t^j e^{-\eta^j})}{2y E_e}$$

different resolved components

Large fraction of charm from resolved photons

Angular D*-Jet Distributions

Angular D*-Jet Distributions

Resolved Photons vs. Scale

Compare light quark, charm and beauty in resolved di-jet photoproduction (note different but comparable di-jet cuts for inclusive, c and b)

Andreas B. Meyer, DESY

Heavy Quark Production

Charmonium Production

pp: CS (LO) factor ~30 lower than data !

Colour Singlet (CS) $c\overline{c} \rightarrow J/\psi$ + gluon

NRQCD-factorization:

 $\sigma_{J/\psi X} = \sum \hat{\sigma}(p\bar{p} \to c\bar{c}[n]X) \times \mathsf{LDME}[n]$

Long distance matrix elements (LDME) from NRQCD fits to Tevatron data

Assume/test universality of LDME data from other experiments (e.g. HERA, LEP, b-factories)

> Note: NRQCD is LO only, NLO underway

NLO only available for Color Singlet in γp

Heavy Quark Production

Charmonium Production in γp and $\gamma \gamma$

8 J/ψ Polarisation

THE smoking gun signature for NRQCD

Select prompt component of J/ψ sample using lifetime spectrum

Run-l

0.75

0.5

d σ/dp_†(J/ψ)*Br(J/ψ→μμ) nb/(GeV/c)

17

Braaten et al

Charmonium production at HERA

New measurement from ZEUS:

(kinematic range: 2<Q²<80 GeV², 50<W<250 GeV, 0.2<z<0.9, -1.6<Y_{lab}<1.3)

Additional cut on $p_t^* > 1$ GeV (compare with H1, remove regions of largest theor. uncertainty)

Heavy Quark Production

Charmonium at b-Factories

CLEO Y(1S) \rightarrow J/ ψ X continuum subtracted

Andreas B. Meyer, DESY

Heavy Quark Production

X(3872) found in $B \rightarrow K(J/\Psi\pi^{+}\pi^{-})$ (Belle) confirmed by CDF, DO, BaBar $\langle M \rangle = 3871.9 \pm 0.6 \text{ MeV}$, $\Gamma < 2.3 \text{ MeV}$ (90% C.L.) $D^{0}\overline{D}^{0*}$ threshold: $3871.3 \pm 1.0 \text{ MeV}$ Favored $J^{PC}=1^{++}$ (BELLE) Analysis of angular and $\pi^{+}\pi^{-}$ dists. ($\pi^{+}\pi^{-}$ likely from Q^{0}) Decays $X \rightarrow J/\Psi\omega$ and $X \rightarrow J/\Psi\gamma$ seen, indicating $C=+1^{\circ}$ all consistent with a $D^{0}\overline{D}^{0*}$ molecule (!) E.S.Swanson PLB588,189(2004) possibly with $J/\Psi Q^{0}$ and $J/\Psi\omega$ admixture

X(3872) in $\gamma\gamma$ and ISR (e⁺e⁻ $\rightarrow \gamma_{ISR} J/\Psi \pi^+\pi^-$)? No signal found (would be expected for 1 -- charmonitum) 'By-products' of the X(3872) scrutiny: Y(3940) found in B \rightarrow K(J/ $\Psi\omega$) decays (Belle) Events/40 MeV above DD^{*} threshold, but no DD^{*} decays seen Y(3940) a cc-g hybrid? But $M_{\text{Lattice}} \approx 4.4 \text{GeV}$ X(3938) (seen in J/ ΨX recoil mass spectrum) decays into DD* seen, but no evidence for decays into J/ $\Psi\omega$, X(3938) could be the η_c " Events / 20 MeV/c² B B B A Y(4260) found in e⁺e⁻ $\rightarrow \gamma_{ISR} J/\Psi \pi^+\pi^-$ 30 continuum scan (BaBar) X(3872), X(3938), Y(3940), Y(4260), ... opening up new fields of QCD More data, more surprises !!! Andreas B. Meyer, DESY Heavy Quark Production

New Heavy Particles

Conclusions

- Heavy Quark Production is a rich field of research
- sophisticated measurements with increasingly large data samples & vivid theoretical developments
- Charm Production: All about precision !
 - Proton structure: Precision ep data starting to constrain pQCD
 - Photon structure: Charm and beauty contributions to photon being explored
 - Beauty Production: Many new measurements !
 - Theory improvements leading to converging picture (fragmentation, hadronisation)
 - High cross sections at LEP still unexplained
 - Quarkonia: Still causing some trouble
 - Production process (rates and distributions) not quantitatively understood
 - NRQCD (LO) appears to be being disproved, (tedious) NLO calculations underway
- New Resonances:

- Large statistics give access to new frontiers in the understanding of QCD
- Quantum numbers being studied
- Possibly new production mechanisms to be explained

More data, more surprises: Expect many new insights still at HERA, Tevatron & b-factories