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K. Černý1, P. Van Mechelen2, E. A. De Wolf2

1Charles University, Praha, Czech Republic
2Universiteit Antwerpen, Belgium

Abstract

A neural net method is proposed for the reconstruction of the proton momen-
tum from the measured impact co-ordinates and slopes in the VFPS detectors.
Resolutions of the reconstructed kinematic variables are determined and the
effects of detector measurement errors and the uncertainty due to the beam
spread and divergence at the interaction point are studied. A quality criterium
is developed to distinguish well-reconstructed protons from background and
the stability of the method w.r.t. varying beam conditions is studied.

1 Introduction

The Very Forward Proton Spectrometer (VFPS) [1] was installed in the H1 experiment
during the 2003 shutdown of HERA. Its aim is to trigger on and measure the momentum
of diffractively scattered protons originating from the H1 interaction point (IP). Because
of the typically low energy losses (xIP ∼ 0.01) and scattering angles (−1 GeV2 . t), the
VFPS detectors were placed at 220 m distance from the main H1 detector so that the
strong spectrometer effect of the horizontal HERA dipole magnets can be used to separate
diffractively scattered protons from the nominal proton beam.

The hardware setup of the VFPS is very similar to that of the Forward Proton Spectro-
meter (FPS) [2] which was previously installed between 60 and 90 m downstream from
the H1 detector. The VFPS consists of two Roman Pot stations, approximately 4 m
apart and equipped with scintillating fibre detectors which approach the HERA proton
beam horizontally from inside the HERA ring. The transverse co-ordinates of proton hits
measured in both detector stations are combined into transverse intercepts and slopes
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with respect to the nominal proton beam at a location halfway between the detector
stations.

While the reconstruction code for hit finding, local track (in one station) and global
track (combining two stations) reconstruction is common with the FPS, one needs to use
a different approach for the determination the proton momentum from the intercepts and
slopes. This is partly due to strong non-linear effects present in the HERA beam optics
between the H1 interaction point and the VFPS. More importantly, however, a strong
inbalance exists between the horizontal and vertical energy dispersion of the proton beam:
while a strong dispersion exists in the horizontal co-ordinate, the vertical co-ordinate
changes very little within the range of energy deviations relevant for the VFPS. The
approach used for the FPS, exploiting both co-ordinate planes for the reconstruction of
xIP is therefore less adequate in the case of the VFPS.

Regardless of the chosen approach for the reconstruction of the proton momentum,
an efficient parameterization of the beam optical functions is required. Although the
H1SIM package provides a detailed simulation of the proton trajectories, these routines
cannot be used in the reconstruction code because of the large computing time needed
for the simulation of one proton trajectory. This computing time would be multiplied by
a large factor when testing different assumptions for the proton momentum in a fit to
the measured intercepts and slopes. In this note a neural net method is proposed for the
parameterization of the dependence of intercepts and slopes at the VFPS location on the
initial proton momentum. This method has the added benefit that it is equally possible
to parameterize the inverse relation, with the initial proton kinematics depending on the
measured intercepts and slopes, thereby solving the reconstruction problem without the
need for a complicated fit procedure.

This note is organized as follows. Section 2 discusses the relation between the proton
momentum at the interaction point and the intercepts and slopes of the proton trajectory
at the location of the VFPS. Section 3 gives a short overview of the neural net method
used to parameterize the above relation. Section 4 discusses the different Monte Carlo
samples that are used and the resulting parameterizations in both directions are presented
in Sec. 5 together with the resolutions of the reconstructed kinematical variables. Finally,
Sec. 6 proposes a quality criterium for the reconstruction fit and the effect of varying the
proton beam emittance on the obtained resolutions is studied in Sec. 7. A conclusion is
given in Sec. 8.

2 VFPS beam optics

The subject of this note is the reconstruction of the proton momentum based on the
measurement of impact co-ordinates and slopes in the VFPS. The relation between both
is given by the HERA beam optics and can be described in a general way by a matrix
equation:

X = T · (X0 + α). (1)

The variables in this equation are defined as follows:

• X is a 4 × 1 column vector containing the positions (x,y) and slopes (x′,y′) of the
proton at a location halfway between the two VFPS Roman Pot detectors;

• T is a 4 × 5 transport matrix describing the optical functions between the IP and
the VFPS;
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Figure 1: Lines of constant relative energy loss (xIP ) and scattering angles (θx, θy) are
drawn in the horizontal and vertical planes of slope versus position of the proton halfway
between the VFPS stations. Lines of constant xIP are drawn in steps of 0.002 and lines of
constant θx(θy) are drawn in steps of 0.2 mrad. Only points inside the VFPS acceptance
are displayed.

• X0 is a 5 × 1 column vector containing the positions (x0,y0), slopes (x′

0,y
′

0) and
relative energy deviation (ξ0) at the IP before the diffractive interaction;

• finally, α is a 5×1 column vector describing the diffractive interaction and containing
zeroes for the change in position, the horizontal and vertical scattering angles (θx

and θy) for the change in slopes and the relative energy gain (−xIP ) for the change
in relative energy deviation.

In order to determine the proton momentum, one needs to solve Eq. (1) for α.
No attempt is made to include information on X0 measured by the main H1 detector.

Neglecting the beam spread and divergence at the IP and thus assuming X0 = 0, results
in additional smearing of the measured co-ordinates which has to be included in the
uncertainty on X. In this case Eq. (1) reduces to a (over-determined) system with 4
equations and three unknowns:

X = T̃ · α̃, (2)

where T̃ is now a 4 × 3 matrix derived from T and α̃ is a 3 × 1 column containing the
scattering angles (θx and θy) and the relative energy gain (−xIP ).

In many applications the transport matrices T and T̃ can be taken to be constant such
that Eq. (2) is a simple linear system of four equations and three unknowns. Moreover,
in the absence of sextupole and higher multipole magnets, the horizontal and vertical
co-ordinates decouple, such that the problem is reduced to two independent systems of
two equations, that can be solved for (θx, xIP ) and (θy, xIP ), respectively, yielding two
independent determinations of xIP .

In the case of the VFPS, however, where differences in the measured coordinates of
a few tens of microns are relevant, the linear approximation, which is valid for small
energy deviations, positions and slopes, is no longer adequate. Strong non-linear effects,
originating from the magnets in the cold section of HERA, need to be taken into account,
effectively making the matrix elements of T (and T̃) dependent on the proton momentum.
Moreover the presence of sextupole magnets will introduce a coupling between the vertical
and horizontal planes. Figure 1 shows the grid with lines of constant energy loss and
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Figure 2: Schematic structure of the Multi Layer Perceptron network. In this case the
structure consists of 4 inputs, 5 neurons in the first hidden layer, possible other hidden
layers and one output.

scattering angles projected onto the horizontal and vertical planes of slope versus intercept
at the VFPS location. As can be seen, the deviations from a rectangular (linear) grid are
large. The change in position when keeping the scattering angle fixed is also much smaller
in the vertical direction than in the horizontal direction, especially for small scattering
angles. This is because the strong energy dispersion only exists in the horizontal plane.

3 MLPfit Neural Net

In this work we concentrate on the Multi-Layer Perceptron fit (MLPfit) package [3], but
in general any other fitting method could be used. The MLPfit has the advantage of
providing a better fit for the same number of parameters than e.g. a simple polynomial
fit. Moreover, MPLfit has been implemented in PAW and is therefore a very user-friendly
fitting tool.

The basic scheme of the MLP network is sketched in Fig. 2. Input quantities are
processed through successive layers of “neurons”. There is always at least an input layer,
with a number of neurons equal to the number of variables of the problem, and an output
layer where the perceptron response is made available, with a number of neurons equal
to the desired number of quantities computed from the inputs. The layers in between are
called “hidden” layers. Each neuron of a layer other than the input layer first calculates
its input value as a linear combination of the outputs of the neurons of the previous layer
plus a bias. The coefficients of the linear combinations and the biases are called “weights”.
They are usually determined during training of the network where a set of examples is
used to minimize the (Euclidean) norm of the desired output. Neurons in the hidden layer
then calculate a non-linear function of their inputs. In MLPfit, the non-linear function is
the sigmoid function y(x) = (1+e−x)−1. Any continuous function of one or more variables
can be approximated by a linear combination of sigmoid functions. Various interfaces for
the MLPfit package are available; in this work we stick to the PAW interface.
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Several points deserve some comments.

• The MLP networks are standard “feed-forward” networks with a maximum number
of hidden layers equal to 2. The maximum number of neurons in each hidden layer
is 100. The maximum number of inputs and outputs is limited to 29 when data is
read from a PAW N-tuple.

• For the training (or learning) phase, the input and desired output values have to
be known simultaneously. The learning procedures always attempt to minimize
E = Σp δp where p runs over all examples and δp = ωp(̺p − ǫp)

2, where ωp is weight
of one example (in our case always equal 1), ̺p is the response (output value) of
the network (this is actually the expression that contains the inter-neuron weights)
and ǫp is the expected (or desired) output. One minimization iteration is called an
“epoch”.

• The training data should not coincide with the data that are used to test the per-
formance of the net.

• The inputs are recommended to be rescaled to the interval [0, 1] in order not to
lose precision due to the sigmoid transformation. It is convenient to also rescale the
output of the network to some reasonable interval like [0, 1] as the output value is
a linear combination of sigmoid functions.

• The structure of the network and the number of learning epochs is a matter of
proper choice and testing. A network structure that is too small compared to
number of examples leads to inaccurate results, while a network that is too large
with insufficient statistics may result in over-fitting.

4 Monte Carlo simulation

By means of Monte Carlo simulation one gets access to the full information on the relation
between the diffractive kinematics α̃ and the intercepts and slopes X of the proton track
detected by the VFPS. In this study various Monte Carlo samples are produced in order
to investigate the effect of different uncertainty sources.

4.1 Uncertainties on the measured coordinates and slopes

As explained in Sec. 2, no attempt is made to measure the initial offset and tilt of the
proton entering the diffractive interaction. The beam spread and divergence at the IP will
therefore result in a smearing of the positions and slopes of protons at the VFPS, which
will limit the attainable resolution on the proton momentum. One can, e.g., never hope to
measure the scattering angle with a resolution that is better than the beam spread at the
IP. The resulting uncertainties on positions and slopes are highly correlated. Table 1 lists
the expected (co-) variances calculated in the linear beam optics approximation (valid for
the nominal proton beam) in the horizontal and vertical plane.

A second source of uncertainty is the fibre detector resolution itself. Figure 3 shows the
difference between simulated and reconstructed intercepts and slopes as obtained from an
H1SIM simulation. The resolutions are 57 µm and 26 µrad for the intercepts and slopes,
respectively, in both planes.
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Figure 3: Differences between generated and reconstructed intercepts and slopes are plot-
ted, taking into account the VFPS fibre detector resolution as implemented in H1SIM.

σx(y) [µm] σx′(y′) [µrad] ρxx′(yy′) [%]
x0 118 48 0
y0 320 178 0
x 404 30 -86
y 2027 124 +97

Table 1: Standard deviations and correlation coefficients for the horizontal and vertical
positions and slopes of a proton at the IP (x0, y0) and at the location of the VFPS (x,
y), caused by the beam spread and divergence at the IP.

4.2 Data samples

Monte Carlo samples are obtained by means of the forward beam line simulation as
implemented in H1SIM. The range in generated momentum of the scattered proton is
defined by |t| < 4 GeV2 and 0 < xIP < 0.04. The following Monte Carlo samples are used
and need to be carefully distinguished:

1. A “clean” sample is obtained by switching off the beam spread and divergence at
the IP, by switching off the simulation of all physics processes (except the energy
loss process) and by taking the intercepts and slopes at the location of the VFPS
before any detector simulation. The reason why the energy loss process is kept
is technical and has to do with purifying the sample from events in which some
background generating phenomena occur (like e.g. protons leaving the beam pipe).
This sample is labelled with “CLEAN”.
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2. A second sample is obtained by switching on the beam spread and divergence at the
IP and by smearing the intercepts and slopes at the location of the VFPS according
to the resolutions found in Fig. 3. A full simulation of the detector resolutions
using H1SIM and H1REC is not possible at this point because physics processes are
still switched off and because this would introduce errors in the reconstruction of
intercepts and slopes which would deteriorate the quality of the parameterization.
This sample is labelled with “VTX+DET”.

3. A sample with all physics processes switched on is also obtained. In this case the
beam spread and divergence is always present and the detector resolution is taken
into account by a full simulation and reconstruction of the VFPS. This sample
should resemble the real data and is denoted with “ALL”.

4. For the purpose of testing the stability of the method, a sample with all physics
processes switched on was produced using a larger value for the beam emittance,
resulting in a larger spread and divergence of the proton trajectories at the in-
teraction point. The beam emittance was changed from ǫorig = 5.69 × 10−9 m to
ǫnew = ǫorig × 1.5. This sample is denoted with “LRG EMI”

5 Parameterization of the beam optics

5.1 VFPS coordinates as function of proton kinematics, X(α̃)

The mapping of proton kinematics to VFPS intercepts and slopes,

α̃ =





θx

θy

xIP



 −→ X =









x
x′

y
y′









(3)

is simulated in H1SIM. In order to have faster and more convenient access to this infor-
mation, the results of H1SIM are parameterized using MLPfit, yielding four functions of
the proton kinematics:

Xnn(α̃) =









xnn(θx, θy, xIP )
x′

nn(θx, θy, xIP )
ynn(θx, θy, xIP )
y′

nn(θx, θy, xIP )









(4)

For this task two independent CLEAN data samples are used for training and for
comparison. Figure 4 shows the deviation of the neural net parameterization from the
generated intercept and slopes. The resolutions on x, x′, y and y′ are 25 µm, 1.2 µrad,
19 µm and 0.7 µrad, respectively. Comparing this to the detector resolutions of Fig. 3 one
may conclude that the fit is able to describe the proton trajectory with adequate precision.
Appendix A lists the training parameters of the neural net used for this parameterization.
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Figure 4: Differences between generated proton track intercepts and slopes and fitted
(MLPfit) values are shown. No vertex or detector smearing is used for training and
comparison.

5.2 Proton kinematics as function of VFPS coordinates, α̃(X)

The inverse task amounts to the parameterization of the actual reconstruction of diffrac-
tive proton kinematics from the VFPS measurement

X =









x
x′

y
y′









−→ α̃ =





θx

θy

xIP



 . (5)

The result of this parameterization are three functions of the intercepts and slopes,

α̃nn(X) =





θx,nn(x, x′, y, y′)
θy,nn(x, x′, y, y′)
xIP,nn(x, x′, y, y′)



 . (6)

As the Xnn(α̃) parameterization in the previous section was trained with the CLEAN
sample, it is natural to try to use the CLEAN sample for the inverse parameterization as
well. Figure 5 displays reconstruction errors on xIP , |t| and φ as functions of xIP and |t|
for CLEAN-trained networks applied to the CLEAN and VTX+DET sample. Details on
the training parameters are again listed in App. A. The natural expectation is confirmed:
as the level of smearing of the control sample increases, the reconstruction becomes less
precise. One may wonder whether training with already smeared samples could describe
the smeared data better. The answer is yes: Fig. 6 shows the results of a VTX+DET-
trained network applied to the VTX+DET sample.
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Figure 5: The main kinematic dependencies of the errors on the reconstructed proton
kinematics are shown. Here, a CLEAN-trained network is applied to an (independent)
CLEAN (light yellow) and a VTX+DET (dark yellow) sample.

0

0.001

0.002

0.003

0.004

0.005

0.01 0.02 0.03
xIPgen

σ(
x IP

ge
n 

- 
x IP

re
c)

VTX+DET
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1
tgen [GeV2]

σ(
t ge

n 
- 

t re
c)

 [G
eV

]

VTX+DET

VTX+DET - training

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1
tgen [GeV2]

σ(
φ ge

n 
- 

φ re
c)

 [r
ad

]

VTX+DET

Figure 6: The main kinematic dependencies of the errors on the reconstructed proton
kinematics are shown. Here, a VTX+DET-trained network is applied to an (independent)
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Since the resolution clearly improves when using a more realistic sample for training
of the neural net, one may think that the ALL data sample is preferred for the training
of the neural net which is to be used for the reconstruction of real data. However, this
sample cannot easily be purified from background events, leading to bad parameteriza-
tions. Here, we distinguish background events where the measured intercepts and slopes
have no correlation whatsoever with the proton kinematics, from the VTX+DET events
where the the relation between co-ordinates and kinematics is merely smeared out. The
VTX+DET sample is therefore the most advanced sample for training and this sample
will be used in the subsequent sections.

6 Quality assessment

6.1 Definition of a quality estimator

In order to remove background events when applying VTX+DET-trained networks to
the ALL data sample, a quality estimator for the reconstructed kinematics needs to be
introduced.

As already discussed, the beam spread and divergence at the IP and the finite detector
resolution results in the smearing of the reconstructed intercepts and slopes, Xrec. A
quality estimator can then be defined as

Q = T (Xrec − Xnn(α̃gen)) · (Covnn(α̃gen))−1 · (Xrec − Xnn(α̃gen)), (7)

where Xnn(α̃gen) is obtained from the CLEAN sample as in Sec. 5.1 and Covnn(α̃gen)
represents the 4×4 covariance matrix describing the vertex and detector smearing, which
actually also depends on the proton kinematics. The dependence of Covnn on α̃gen also
needs to be parameterized using the CLEAN sample.

If one assumes that the smearing of Xrec is Gaussian, then this quality estimator must
follow a χ2 distribution. Indeed, the left plot of Fig. 7 displays the Q distribution as
obtained from the VTX+DET sample together with the theoretical χ2 shape for four
degrees of freedom.

The generated kinematics is however unknown in real data processing. Therefore, one
has to reformulate Q using α̃nn(Xrec) instead of α̃gen, as sketched in Fig. 8. However,
the errors on the “reobtained” X may now depart from a Gaussian shape. Indeed, Fig. 9
shows the distribution of the difference between Xrec and Xnn(α̃nn(Xrec)) compared to
Gaussian distributions of the same mean and variance. On the right plot of Fig. 7 one
can see the Q distribution using α̃nn(Xrec). The shape of the Q distribution has changed
compared to the original one: although the spread is similar as before and the mean has
even decreased, the tail is clearly extending to much larger values of Q. Nevertheless,
it is natural to expect larger Q values for events where Xrec and Xnn(α̃nn(Xrec)) differ
“too much”. This allows to reject Xrec entries which do not correspond to the mapping
according to Fig. 1.

6.2 Application of the quality criterion

The selection of high quality events by requesting large Q values inevitably leads to a
reduction in the event number. The aim is to apply an efficient cut that is able to reject
background events while keeping the loss in statistics reasonably low. Figure 10 shows
the relative event loss as a function of the Q cut value for the VTX+DET sample which
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Figure 7: The Q distributions as obtained using Xnn(α̃gen) (left histogram) and using
Xnn(α̃nn(Xrec)) (right histogram) for data including the beam spread and divergence at
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construct the proton kinematics using the reconstructed co-ordinates and a VTX+DET
trained network. Then one can use the reconstructed kinematic variables to recalculate
the co-ordinates corresponding to this kinematics according to a beam optics parameter-
ization based on a CLEAN training sample. The quality criterium can then be obtained
by taking the “χ2” difference between both sets of co-ordinates.
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Figure 10: Relative event loss in the VTX+DET data sample as a function of the Q cut.

does not contain any background. A 10% loss of events is achieved with the selection
Q < 7.

Figure 11 (top) shows the hit distribution in the x′-x and y′-y planes as obtained from
the ALL data sample. Due to possible interactions with material inside the beam-pipe,
wrong demultiplexing (see [1]), etc. background hits are produced in the VFPS detectors.
The power of the Q cut is very well illustrated by Fig. 11 (bottom) where the same
plots are obtained after reconstruction and selection of those events with Q < 7. The
background hits caused by wrong demultiplexing, which show up as additional bands
above and below the main hit area have completely disappeared.

It has been checked that events which have reconstructed intercepts and slopes too far
away from the generated ones overlap for ∼ 60% with the events that are rejected by the
Q selection criterion, proving that this method does indeed remove wrongly reconstructed
events.

The final error dependencies for the ALL data sample, after applying the Q < 7 cut,
are shown in Fig. 12. The error on xIP varies more or less linearly from 0.0005 to 0.002
and is always less than 7.5%. The error on t varies from 0.06 to ∼ 0.2 GeV2 and the error
on φ reaches 0.2 rad at large |t|.

7 Stability of the reconstruction method

As discussed in Sec. 5.2, it is important to train the neural net using a data sample which
includes the uncertainties on the reconstructed intercepts and slopes. It is therefore
important to investigate the performance of this reconstruction method when the actual
uncertainties deviate from the one used in the training sample. E.g. the beam quality
may vary between lumi runs and a variation in the beam emittance can be expected.
This would result in a different beam spread and divergence at the interaction point and
therefore yield a different uncertainty on the reconstructed co-ordinates.

In order to study the stability the reconstruction method as function of the beam
quality, a data sample with larger beam emittance (LRG EMI) is generated. This data is
then reconstructed using a network trained with the VTX+DET sample with the nominal
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Figure 11: Hit distributions in the x′-x and y′-y planes for the ALL data sample before
(top) and after (bottom) selecting events with Q < 7.
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Figure 12: The main kinematic dependencies of the errors on the reconstructed proton
kinematics are shown for the ALL data sample obtained with a VTX+DET trained net-
work and after selecting events with Q < 7.
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Figure 13: A comparison is shown of the error dependencies of the reconstructed proton
kinematics for samples generated with a different beam emittance but reconstructed by a
neural net parameterization based on the same (smaller) beam emittance. The selection
Q < 7 is applied on both data samples.

beam emittance. Figure 13 shows a comparison of the error dependencies between an ALL
sample using the original emittance (light yellow) and an ALL sample based on the new
emittance (dark yellow). Both error dependencies were obtained with the quality cut
Q < 7. From the figure it can be concluded that changing the beam emittance by 50%
has very little influence on the error dependencies and that the reconstruction method is
therefore fairly stable against such effects.

8 Conclusion

A neural net method is proposed to obtain a parameterization of the beam transport
functions describing the relation between the proton kinematics at the H1 interaction
point and the impact co-ordinates and slopes at the location of the VFPS.

Using this method, the parameterization of the dependence of the impact co-ordinates
and slopes as a function of the proton kinematics yields an accuracy of δx = 25 µm,
δx′ = 1.2 µrad, δy = 19 µm and δy′ = 0.7 µrad for the horizontal position and slope and
the vertical position and slope, respectively. This accuracy is at least a factor of two better
than the detector resolution as obtained from H1SIM (57 µm and 26 µrad for the positions
and slopes, respectively). The uncertainty introduced by the neural net parameterization
is therefore negligible w.r.t. the (variable) combined uncertainty originating from the beam
spread and divergence at the interaction point and the detector resolution.

For the inverse relation, the parameterization of the proton kinematics as a function of
impact co-ordinates and slopes, yields an accuracy of δxIP /xIP < 4% for the energy loss,
δ|t| < 0.06 GeV2 and δφ → 0.05 rad for large enough |t|. Taking the full uncertainty from
the beam and detectors into account these numbers become δxIP /xIP < 7.5% for the energy
loss, δ|t| = 0.06–0.2 GeV2 and δφ → 0.2 rad for large enough |t|, which demonstrates that
the contribution from the neural net parameterization to the overall uncertainty is much
smaller than the combined effect of vertex smearing and detector resolution.

In order be able to estimate how well the momentum is reconstructed, a quality cri-
terion is proposed. When applying this criterion to a fully simulated and reconstructed
sample, background hits can be removed efficiently, while keeping the loss of well recon-
structed events below 10%.
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A Training parameters

A.1 Training of X(α̃)

Table 2 summarizes the CLEAN-training settings for the Xnn(α̃) parameterization.

CLEAN training xnn x′

nn ynn y′

nn

in - 1st hidden - 2nd hidden - out 3-10-0-1 3-12-0-1 3-8-0-1 3-13-0-1
# of epochs 1000 1000 1000 1000

# of training samples 15000 15000 15000 15000

Table 2: Structure of the networks for the Xnn(α̃) parameterization.

A.2 Training of α̃(X)

Table 3 lists the training settings for the α̃nn(X) parameterization for CLEAN and
VTX+DET trainings.

CLEAN, VTX+DET training xIP,nn θx,nn θy,nn

in - 1st hidden - 2nd hidden - out 4-17-0-1 4-8-0-1 4-11-0-1
# of epochs 2000 2000 1000

# of training samples 14000 14000 14000

Table 3: Structures of the networks for α̃nn(X) parameterization for training with CLEAN
and VTX+DET data samples.
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