Very Forward Proton Spectrometer VFPS @H1 An Overview

- VFPS : purpose/location
- VFPS implementation
 - Cold bypass
 - Roman pot structure
 - Fiber Detector
- VFPS operation
 - Trigger & Readout
 - Roman pot controls / user interface
 - Roman pot movement
 - Some experiences ...
- Collected data /data quality
- First look onto analyses
 - Inclusive diffraction
 - Diffractive jets
- Momentum reconstruction
- Conclusions

Purpose of VFPS

• Purpose VFPS

- ⇒ tagging of diffractive proton with
 - 1. Large acceptance in x_{P}
 - 2. Full t coverage (down to t_{min})
- Complementary to FPS (H,V)
 - Small acceptance in larger x_p range
 - limited t-acceptance (0.08 < t < -0.5 GeV) -4
- Location
 - 3 possible locations
 - Best acceptance in (x_P,t) @ 220 m
 - Roman pots located

@ 218 m ⇔ VFPS1 @ 222 m ⇔ VFPS2

• VFPS location in cold HERA section

28-11-2007

VFPS Cold Bypass

Bypass chronology

•	2000	first ideas to replace
•		Roman pots cold ?
•		Roman pots warm ?

- design start (ext. firm) 2000-Nov •
- 2001-June end design (350 drawings)
- 2002-Febr Tenders out
- 2002-April Offers received •
- 2002-May Starting construction
 - (Dutch firm Demaco)

Test bench DESY

He-Leak tests

- Shipping to DESY 2002-Dec
- 2002-Dec
- - Superconductors tests ⇒ successful
- 2003-April •
 - Installation in HFRA tunnel

VFPS Cold bypass installed - 2003 April

VFPS cold bypass

Hera tunnel:NL220m

Bypass design

Roman pot structure

Roman pot main elements

- Heidenhain rulers Ruler precision 5 μ Range 120 mm
- Motor + movement transfer Motor step 1/4 μ —
- Pressure system for Roman pot ejection

Drag error 80μ

Roman pot mounting platform

Roman pot + detector insert

Roman pot window

Pot windows machined from one block (standard machining method)

Thickness $\approx 300 \ \mu \pm 50 \ \mu$

Trigger and Readout Proton REAN V1 U1 V2 **U**2 Trigger signal to H1 L1 trigger "air cable" ($<2.3\mu$ s) Coincidence Unit (programmable)

R.Roosen - Saclay

Fiber signals

Trigger

Tile signals (T1-T16) to 16 PM's

coincidence unit

Discriminated tile signals to programmable

Trigger requires 1 signal in 3 out of 4 planes

'Air Cable

FPS/VFPS Roman pot controls

Roman pot control system is VME-based

(independent system)

- Control/readout VMIC7750-CPU (+disk)
 - Watch-Dog unit (control software running, temperature in limits) if not
 - ⇒ motor power cut ⇒ Roman pot ejected
 - Scalers (detector rates, coincidences)
 - CAN bus controller: CAN bus connected to
 - Motor controllers (6) control/readout
 - Heidenhain rulers(6) readout
 - Temperature modules(2) readout

User communication VMIC7750-PVSS: TCP/IP

1. PVSS ⇔ VMIC7750

Action requests Updating of VMIC database

2. VMIC7750 ⇒ PVSS

Device status information Messages of actions Error messages

FPS/VFPS motor Control

PVSS: User displays

PVSS communicates with

- 1. VMIC
- 2. NETMEX (HERA)
- 3. VFPS slow control (HV)

PVSS logs all data

Roman pot (positions, temp,...), Hera (mag.,coll,...) Stores logfiles

28-11-2007

R.Roosen - Saclay

VFPS operation: Roman pot movement

Move-in condition

- Luminosity
- Scaler rates non zero

Checks during move-in

- Average coincidence rates (sampling ≈5 meas.)
- Gradient rate
- Movement is halted when rate over limit
- Peak rate exceeded \rightarrow eject -

Target-in position

Checking peak rate if exceeded \rightarrow eject

Detector rate / position : 1 day x 10² x 10² 2000 2000 1500 1000 1000 500 0 0 500 500 S2- 9: Trig VFPS 1 S2-10: Trig VFPS 2 100 09400-000-09400-000-09 NU400-000-NU400-000-NU 80 80 60 60 40 40 20 20 0 0 500 0 500 0 **RP 5:**Position vs time **RP 6:**Position vs time 12

FPS/VFPS Move-In Procedure

VFPS operation: influence VFPS1 on VFPS2

- During move-in procedure
- Normal running

VFPS operation: Effect of VFPS1 on VFPS2

• Effect on the hit multiplicity

28-11-2007

VFPS Running experience 2004-2007

2004

Irradiated fibers (trigger rate)

2005

Detector shift in pot (access !!) Good data after June

2006

Broken motor axis Standard running Various beam kicks

2007

Standard running

VFPS/FPS Data Acquisition System

R.Roosen - Saclay

Collected VFPS data

- 2004 startup period (fiber problem)
- 2005 detector fixing problem
 - 20 pb⁻¹

2006 - 95 pb⁻¹ 66%

- 2007 E=920 GeV
 12 pb⁻¹ 84%
- 2007 Low E
 - 3.9 pb⁻¹ 82%

Data Quality: Tiles

Tile 2 : Efficiency / DayOfYear

VFPS2

P1-2-3-4

D2

Inclusive diffraction (T.Hreus)

- VFPS acceptance
 - X_p as measured is H1
 ⇒ Good acceptance in expected x_p region (Tile efficiency to be added)
- Statistics used 24 pb⁻¹ = 80K (130 pb⁻¹)
 - Proton beam bump @ 6mm
 - 3900 VFPS tagged events (η_{max} , R_{spac} cut)
- Analysis F_2D_3
- In conjunction with t-measurement
 ⇒ F₂D₄

Inclusive diffraction (T.Hreus)

2200 2000 2000 1800 Event selection - H1 detector ALL DATA DATA VFPS TAG 1. $|Z_{vertex}| < 40 \text{ cm}$ 1600 ALL MC 2. E_{electron} > 10 GeV 1400 MC VFPS TAG 1200 3. $Q^2_{electron} > 10 \text{ GeV}$ 1000 > 3 GeV 4. E_x 800 00 000 5. M_{χ} > 3.5 GeV 600 400 6. Rapidity gap 200 Forward Muons 2 3 -3 Ω -1 $\#F_{\mu}(P_1+P_2) < 2 \&\& \#F_{\mu}(p_1+p_2+p_3) < 3$ ຖ _{max} η_{мах} < 2.5 • Events 6000F 5000 ALL DATA Event selection - VFPS tag DATA VFPS TAG 4000 Trigger ALL MC 3000 MC VFPS TAG vfps1te && vfps2te (vfps1te = 3 planes of 4 have >=1 hit) 2000 1000 0.015 0.03 0.005 0.02 0.025 0 0.01 X_{IP} 19

•

٠

Di-jet analysis - DIS (J.Delvax)

- Event selection H1 (K₊-algorithm)
 - DIS cuts
 - $(P_{T,1}^* > 5 \text{ GeV}) \& (P_{T,2}^* > 4 \text{ GeV})$
 - $\eta_{J1,J2} \in$ [-1,+2]
- Event selection VFPS
 - vfps1te && vfps2te
- Statistics:
 - 97pb⁻¹ (75% of total event sample)
 - ⇒ 637 events
- VFPS tag selects di-jets with good acceptance

Jet analysis - Photoproduction (J.Delvax)

• Event selection H1: 2 Jets (Kt-algorithm)

- n_{MAX}<2.5
- (P^{*}_{T,1} > 5 GeV) & (P^{*}_{T,2} > 4 GeV)
- $\eta_{J1,J2} \in [-1,+2]$
- Event selection VFPS
 - vfps1te && vfps2te
- Statistics 23.7 pb⁻¹
 - Collected with dedicated trigger
 - total statistics 2006+2007
 6000 events
- Goal

Compare t-dependence in DIS & Photo production jets (factorization breaking)

Proton beam bumps for VFPS

Beampipe aperture limitation at 200 m ⇒ high x_p scattered protons are lost Solution ⇒ Introduce beam kick

Practice: different bumps used 2006

Beam Optics: find map: $M^{-1:}(x_P,\theta,\phi) \Rightarrow (x,y,y',y')$ - standalone - H1SIM

Reconstruction: find map: $M : (x,y,y',y') \Rightarrow (x_P,\theta,\phi)$ - N(eural) N(et) Calibration: Detector - beam distance

MC versus data

Detector x-y hit maps

Neural Net Reconstruction

X_{P} Reconstruction

2. p events kinematically fully defined ; e + p ⇒ e' + p + p' p' is known from H1 (in progress)
 acceptance in t 100 %

Conclusions

- VFPS hardware experience: (very) good except
 - irradiated fibers (unforeseeable)
 - Even small problems can turn out to be big because of limited tunnel access !
- VFPS software experience: (very) good
 - No major problems
 - Once properly adjusted to beam environment: fine
- VFPS \leftrightarrow HERA machine
 - Many parameters to survey: needs permanent attention
- Proton momentum Reconstruction: difficult because of many details to be taken into account (beam bumps)
- Analyses in progress and planned
 - F₂D₃ analysis based on VFPS trigger only
 - F_2D_4 analysis : follow-up of F_2D_3 with t-measurement
 - Analysis of DIS/photo-produced jets with t-slope measurements

END