The Forward Proton Taggers at H1

Tinne Anthonis University of Antwerpen Tinne.Anthonis@ua.ac.be

(on behalf of the H1 Collaboration)

Physics with forward proton taggers at the Tevatron and LHC 14-16 December 2003, Manchester UK

Outline:

- Introduction
- Physics results from HERA I
- Installation of the VFPS
- > Expected results at HERA II

Diffraction at HERA

- Q^2 , x (or W), M_X
- longitudinal momentum fraction of the proton carried by the colourless exchange:

$$x_{IP} = \frac{q \cdot (P - p_Y)}{q \cdot P} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

• longitudinal momentum fraction of the colourless exchange carried by the struck quark:

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

• four-momentum transfer squared *t*

HERA I :

- > Measurements of F_2^D , incl. final states, jets, charm, excl.VM, DVCS, ...
- BUT statistically (exclusive channels) and systematically (proton dissociation) limited !

HERA II :

- Major upgrade of the H1 detector
- > High luminosity need for efficient diffractive trigger
- Need for clean selection by directly tagging the elastically scattered proton

HERA I results: F_2^{LP}

Tinne Anthonis

Beam simulation studies

Non-linear corrections !

- > Non-linear effects in energy deviation
- Sextupoles
- > Offset, tilted magnets

VFPS location

- > VPFS location is optimised for acceptance → 220m NL
- Proton beam is approached horizontally (use HERA bend)

H1

 Bypass is needed to access the beam pipe in the cold section of HERA

VFPS

HERA-B

ZEUS

VFPS Acceptance

- > Use beam line simulation
- Detectors approach beam up to 12 times the beam enveloppe + 3 mm "coasting beam margin"
- > Horizontal FPS needs large *t* to separate protons
- > Vertical FPS uses dispersion of magnet, needs large x_{IP}
- > VFPS uses dispersion of HERA bend to detect protons with small *t* and x_{IP} (dominant region for *IP* exchange)
- Acceptance range:

	FPS-H	FPS-V	VFPS
t	0.2 - 0.4	0 0.15	0 0.25
$X_{I\!P}$	$10^{-5} - 10^{-2}$	0.05-0.15	0.01 - 0.02
local acc.	~ 30%	~ 100%	~100%

VFPS Reconstruction

VFPS Resolution

- > Resolution dominated by the beam characteristics (with minimal sensitivity to the spatial resolution of the fibre detector)
- > x_{IP} resolution is competitive with the reconstruction of x_{IP} by H1
- $> \sim 4$ bins in *t*
- ~ 15 bins in Φ for |t| > 0.2 GeV²

VFPS Alignment

- Relative positioning of the pots vs the nominal beam
 Eventation
- > Exploit x_{IP} measurement by H1
- > Use forward peak t = 0
- Calibration fit:

$$\chi^{2} = \frac{\theta_{x}^{2}}{\sigma_{x}^{2}} + \frac{\theta_{y}^{2}}{\sigma_{y}^{2}} + \frac{(x_{IP} - x_{IP}^{HI})}{\sigma_{(x_{IP} - x_{IP}^{HI})}^{2}}$$

Alignment precision of ~100 µm is feasible
Alternative fits are possible with e.g. elastic rho mesons

Cold beam line bypass

Modification of 10m drift segment: horizontal bypass for helium and superconductor lines

Tinne Anthonis

Cold beam line bypass

Roman Pot insert

VFPS detector

VFPS detector:

2 detectors per Roman Pot station
1 detector: 4 trigger tiles in u-direction + u fibre plane + v fibre plane + 4 trigger tiles in v-direction
Spatial detector resolution ~ 100 µm
Cosmic tests: very good efficiency (~99%)

Fiber specifications:

- ≻ Diameter 480 µm
- ▹ Pitch 340 µm

Optical connection:

- > 5 fibre layers (= 1 plane) → 1 light guide
- > 4 light guides → 1 PSPM pixel (multiplexing)

VFPS in the HERA tunnel

Present status VFPS

- > VFPS completely installed
- > Vacuum fine
- > Data Acquisition ready + working
- Slow Control ready + working
- > BUT due to H1 safety problems: VFPS in parking position ...
 - → should be solved before the end of the year
 - → hopefully first VFPS data beginning 2004
 - → will be used to time in the signals and calibrate the detectors

Expected results: Inclusive diffraction

- Luminosity 350 pb⁻¹ (3 years of HERA II running with 50% VFPS operation efficiency)
- > Study t dependence $F_2^{D(4)}(Q^2, \beta, x_{IP}, t)$
- c(Q²) . σ_r^{D(3)} > Uncorrelated systematic errors can approach the level of F_2 (few %)
- > Test hard scattering factorisation (extract diffr. pdf's at fixed x_{IP} and t + predict final states
- > Event yields:

event sample	no coasting beam	coasting beam
$0 < t < 0.2 \text{ GeV}^2$	1800000	810000
$0.2 < t < 0.4 \text{ GeV}^2$	330000	160000
$0.4 < t < 0.6 \text{ GeV}^2$	47000	23000
$0.6 < t < 0.8 \text{ GeV}^2$	6000	3000

t INTEGRATED σ_r^{D} (350 pb⁻¹)

Expected results: F_L measurements

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1 - y + \frac{y^2}{2})} F_L^{D(4)}$$

$$y = Q^2 / s_{ep} x$$

Φ asymmetry:

> pQCD calculable higher twist $F_L^{\ D}$ expected dominant at high β

→ Measure Φ asymmetries as a function of β (and Q2) (remember VFPS can measure 15 bins in Φ)

Leading twist F_{I}^{D} :

> Indirect extraction at low β from NLO QCD fits (gluons!) to $\sigma_r^{D(4)}$

Reduced proton beam energy:

> 40% precision on σ_L^D / σ_T^D expected with 50 pb⁻¹ data at $E_p = 500 \text{ GeV}$

Expected results: Hadronic final states

Diffractive Dijet electroproduction:

- > 96/97 dijet analysis yielded: 2500 events
- > HERAII/VFPS expectation: 22900 events

Open charm production:

- > 96/97 D^{*} analysis yielded: 46 ± 10 events
- > HERAII/VFPS expectation: 380 events
- → more differential studies (particularly for D*)
- direct vs resolved photon contributions
- --- tests of diffractive factorisation theorem

Charm

Expected results: Exclusive channels

Deeply Virtual Compton Stattering (DVCS):

- Sensitive to GPD's (extension of pdf for x ≠ x') via interference with Bethe-Heitler process
 - → Measure charge ($\Re e(A_{DVCS})$) and helicity ($\Im m(A_{DVCS})$) asymmetries

Vector Meson production:

 $e + p \rightarrow e + p + VM$; $VM = \rho$, J/ψ , ...

Clean elastic channel BUT only low W accesible

Summary

- > VFPS needed to trigger diffractive events at HERA II
- Clean tagging of diffractive scattered proton
- > Very good acceptance in narrow window around $x_{IP} = 0.01$
- Good resolution on reconstructed proton momentum
- Installation cold beam line bypass succesful
- VFPS completely installed (waiting for first data to time in the signals and calibrate the detector)
- Many interesting physics results to come:
 - * F_2^{D} , t dependence, F_L^{D} and Φ asymmetries
 - Final states (dijet, open charm) + tests of factorisation
 - * DVCS (access to GPD's) and Vector Meson production