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Populärvetenskaplig sammanfattning

Det mänskliga ögat kan, i bästa fall, upplösa detaljer ner till n̊agra tiondels millimeter,
d.v.s. ungefär tjockleken av ett h̊arstr̊a. Vill man se ännu finare detaljer f̊ar man ta till
n̊agot hjälpmedel, t.ex. ett förstoringsglas, eller - ännu bättre - ett mikroskop. Lägger man
ett h̊arstr̊a under ett bra mikroskop kan man upplösa strukturer mindre är en miljondels
meter, d.v.s. samma storleksordning som celler. Men vi vet att all materia i världen - luften
du andas, marken du st̊ar p̊a och inte minst du själv - är uppbyggd av atomer. För att
”se” atomerna m̊aste vi byta teknik. Hittills har vi använt ögat för att registera det ljus
som reflekterats av h̊arstr̊aet och därefter passerat mikroskopets linser. Utan att vi tänker
p̊a det registrerar ögat en mängd egenskaper hos ljuset: hur mycket ljus som reflekteras,
vilken färg (d.v.s energi eller v̊aglängd) ljuset har, vilka vinklar ljuset sprids i o.s.v. All
denna information bearbetas av hjärnan och ger dig en uppfattning om hur h̊arstr̊aet ser
ut. Men oberoende av hur stora och fina mikroskop man lyckas bygga s̊a n̊ar man änd̊a
till slut en gräns för de detaljer man kan observera, vilken bestäms av det synliga ljusets
v̊aglängd. Ett förem̊al som är mindre än v̊aglängden hos det ljus som det belyses med
kan inte observeras eftersom förem̊alet inte är stort nog för att sprida ljuset. Detta kan
liknas vid en boll som flyter i vattnet. Om bollen är mindre än avst̊andet mellan v̊agorna
kommer de inte att p̊averkas av bollens närvaro. Men om bollen däremot är större än
avst̊andet mellan v̊agorna kommer de att störas och bilda andra v̊agmönster p̊a vattnet.
För att komma vidare i v̊ar strävan att observera mindre detaljer m̊aste vi allts̊a ersätta
det synliga ljuset med ljus av kortare v̊aglängder som t.ex. röntgenstr̊alar. Eftersom vi inte
kan se röntgenstr̊alarna m̊aste vi ocks̊a ersätta ögat med n̊agon typ av detektor t.ex. en
sensor liknande de som finns i digitalkameror.

I de flesta tillämpningar beskriver man ljus som en elektromagnetisk v̊agrörelse, medan
t.ex. elektronen betraktas som en partikel. Men i kvantmekaniken finns det ingen tydlig
gräns mellan vad som skall anses vara en v̊agrörelse respektive en partikel, utan det beror
helt och h̊allet p̊a i vilket sammanhang de förekommer. Allts̊a kan även partiklar beskrivas
som v̊agor och ersätta det vi normalt kallar för ljus, för att belysa förem̊al som skall
studeras. Elektronen är liten och lätt, och är en av de fundamentala partiklar som bygger
upp atomen. Genom att skjuta elektroner med hög hastighet (hög energi - kort v̊aglängd)
mot h̊arstr̊aet och sedan detektera i vilka riktningar och med vilka energier elektronerna
sprids kan vi upplösa detaljer mindre än en miljarddels meter. Med s̊adana s̊a kallade
elektronmikroskop kan man allts̊a ”se” strukturen hos atomerna i h̊arstr̊aet. För att kunna
se in i atomerna - atomkärnan och dess best̊andsdelar protonen och neutronen - behövs
mycket höga energier hos elektronerna, vilket kräver särskilda partikelacceleratorer.

Partikelacceleratorn HERA i Hamburg och detektorerna kring denna anläggning kan
beskrivas som världens största elektronmikroskop, där HERA-acceleratorn utgör ljuskällan
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2 POPULÄRVETENSKAPLIG SAMMANFATTNING

och detektorerna själva mikroskopet. Men till skillnad fr̊an vanliga elektronmikroskop
där provet (h̊arstr̊aet) ligger stilla s̊a accelereras provet (protonen) i HERA till mycket
höga energier, vilket gör att vi kan ”se” in i protonerna; upplösningen är en miljarddels
miljarddels meter, eller 0,000000000000000001 meter. Protonerna best̊ar av kvarkar, vilka
tillsammans med elektronerna tillhör de mest grundläggande best̊andsdelar vi känner till.
De tre ”huvudkvarkarna” i protonen h̊alls samman av en kraft som kallas den starka kraften,
vilken förmedlas av gluoner (fr̊an engelskans ”glue”, d.v.s. ”klister”) som hela tiden str̊alas
ut och absorberas av kvarkarna och h̊aller dem samman. Men det är mer komplicerat än
s̊a. Gluonerna kan nämligen, p̊a grund av en kvantmekanisk effekt, splittras upp i tv̊a
gluoner eller ett kvark-antikvark1 par. Dessa gluoner kan i sin tur splittras upp i nya
gluoner och kvark-antikvark par, medan kvarkarna och antikvarkarna kan str̊ala ut ännu
fler gluoner o.s.v. Det finns dock en gräns för hur länge s̊adana s̊a kallade virtuella partiklar
kan existera, eftersom de har ”l̊anat” energi fr̊an vakuum, och denna energi m̊aste betalas
tillbaka inom en viss tid. Detta kan antingen ske genom en växelverkan med en yttre
partikel eller genom att de virtuella partiklarna åter annihilerar, d.v.s. förintas.

För att kunna dra n̊agra slutsatser om protonens uppbyggnad m̊aste vi detektera elek-
tronen och mäta dess energi och spridningsvinkel, p̊a samma sätt som ögat registrerar
ljusets färg och spridningsvinkel när du tittar p̊a t.ex. ett h̊arstr̊a. En s̊adan detektor har
byggts av H1-kollaborationen, vilken best̊ar av ca. 400 fysiker och ingenjörer fr̊an 12 länder.
När en elektron kolliderar med en proton vid s̊a höga energier träffas en av kvarkarna s̊a
h̊art att den försöker frigöra sig fr̊an protonen. P̊a grund av den starka kraftens speciella
egenskaper till̊ats kvarkarna inte att bli fria, och fria kvarkar har heller aldrig observerats.
Det som sker när den träffade kvarken flyger iväg i en annan riktning än resten av protonen
är att det starka kraftfältet spänns ut och spricker upp p̊a ett s̊adant sätt att nya konfig-
urationer av kvarkar och antikvarkar uppst̊ar och bildar hadroner, som kan observeras
i detektorn. Hadroner är ett gemensamt namn för alla partiklar som är uppbyggda av
kvarkar. Dessa hadroner utgör en partikelskur, eller en jet, med ungefär samma energi och
riktning som den ursprungliga kvarken. Genom att studera s̊adana partikeljettar kan man
f̊a värdefull information om kvarkarnas egenskaper. I s̊adana kollisioner spricker resten av
protonen ocks̊a upp och flera kvarkar och gluoner kan sl̊as ut, vilka bildar jettar i olika
riktningar. För att f̊a maximal information om protonens uppbyggnad m̊aste man allts̊a
detektera b̊ade den spridda elektronen och alla partiklar som bildas i kollisionen. H1-
detektorn är därför uppbyggd för att kunna identifiera och mäta energier och vinklar för
m̊anga olika sorters partiklar.

I den här avhandligen presenteras en analys där jag har undersökt en speciell typ av
kollisioner som ger upphov till minst tv̊a jettar. Dessa jettar kommer ofta fr̊an en gluon som
splittrats upp i ett kvark-antikvark par, och genom att undersöka egenskaper för de tv̊a jet-
tarna kan man f̊a information om gluonen som splittrades upp. Dessutom kan man ta reda
p̊a om, och i s̊a fall hur, den str̊alat ut andra gluoner innan den splittrades upp. Detta i sin
tur ger information om hur den starka kraften fungerar. Teoretiska beräkningar av fenomen
som styrs av den starka kraften görs med kvantkromodynamiken (eng. Quantum Chromo
Dynamics, QCD) och kan vara väldigt komplicerade, vilket medför att approximationer
ofta m̊aste göras. Olika approximationer ger olika förutsägelser för hur sannolikt det är att
tv̊a jettar ska bildas i kollisioner, och vilka egenskaper (energier, vinklar etc.) de i s̊a fall

1De flesta partiklar har en motsvarande antipartikel med exakt samma massa men motsatt laddning.
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har. Resultaten fr̊an analysen har givit fördjupad insikt i det dynamiska förloppet enligt
vilket partonerna splittras upp och har p̊avisat nödvändigheten av en modellbeskrivning
av den starka kraftens egenskaper som skiljer sig fr̊an den gängse. Ett mycket viktigt resul-
tat är att energispektret hos de partoner som produceras i uppsplittringsprocesserna har
kunnat bestämmas för första g̊angen i en s̊adan mätning. För att kunna ange partonernas
energispektrum med ännu högre precision kommer resultat fr̊an mätningar av ytterligare
observabler att inkluderas i bestämningen framöver.





Introduction

The past century has revealed many secrets concerning the fundamental particles and
their interactions. The story of the strong interaction began with the famous scattering
experiment of Rutherford in 1911 [1, 2]. Using α-particles from a radioactive source to
hit a metal foil, he could show that the atom consists of a positively charged nucleus and
negative electrons. Later it was found that the nucleus in turn consists of positively charged
protons and neutral neutrons. By studying the scattering of electrons, with energies up
to 190 MeV, against a hydrogen gas, Hofstadter et al. [3, 4] in 1955 discovered that the
protons in fact are not pointlike, but have their charge distributed in a volume of about
0.7 · 10−15 m in diameter. In the late 1960’s, the Stanford Linear Accelerator (SLAC) was
able to accelerate electrons to energies as high as 20 GeV, and these were scattered against
a liquid H2 target. At such high energies, far beyond what had been previously possible,
the scattered electrons can probe deep into the inner structure of the proton, a process
called Deep Inelastic Scattering (DIS). The experiments at SLAC led to the identification
of pointlike quarks as the constituents of the proton (the Quark Parton Model, QPM) and
later to the formulation of Quantum Chromo Dynamics (QCD) in the 1970’s [5–7].

The experiments leading to these revolutionary discoveries were all fixed-target scat-
tering experiments. In 1992, however, the world’s first (and so far only) electron - proton
collider, HERA2 at the DESY3 laboratory in Hamburg, was put into operation. By collid-
ing 27 GeV electrons and 920 GeV protons, HERA provided much higher center-of-mass
energies than previously obtained, which significantly improved the measuring resolution
and extended the kinematic range coverage by several orders of magnitude. The precision
measurements carried out at the HERA collider have given further insight and a deeper
knowledge about the properties of the constituents of the proton, the quarks and gluons,
and the theory describing the strong interactions, QCD, in which the gluons are the carriers
of the strong force.

The picture we have today is that the proton consists of three valence quarks bound
together by gluons, which are constantly emitted and absorbed by the valence quarks.
Moreover, each of these gluons can “borrow” energy from the vacuum and fluctuate into
two gluons or a quark-antiquark pair, called sea quarks. These gluons can in turn split up
into new gluons and sea quarks while the quarks and anti-quarks can emit more gluons, and
so on. The sea quarks and gluons created in such fluctuations, or splittings, can only exist
for a short time, and must eventually pay back the borrowed energy by annihilating. The

2HERA, Hadron Elektron Ring Anlage, can accelerate both electrons and positrons. Since the analysis
presented in this thesis is insensitive to the choice of either e− or e+, we will not distinguish between them
and the generic name electron will be used for both electrons and positrons.

3Deutsches Elektronen-Synchrotron.
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6 INTRODUCTION

proton can thus be thought of as three valence quarks surrounded by a cloud of quarks, anti-
quarks and gluons which are constantly created and destroyed. The behaviour (dynamics)
of the gluons and quarks (which is the equivalent of asking: “what does the proton look
like?”) is explained by QCD in the region where the theory is applicable. But, since so far
analytic calculations have only been performed to a limited extent due to the complexity of
the parton dynamics, approximations must be used. Such approximations describe how a
parton splits into two new partons in a sequence of splittings. One of these approximations
is named DGLAP [8–11] (after the initials of the originators) and assumes that in each
splitting the propagating partons are ordered in virtuality, or four-momentum squared. The
DGLAP approximation has worked extremely well so far, and has successfully described
various observables measured at HERA. It is, however, expected that DGLAP will fail when
targeting certain corners of the phase space, where other non-DGLAP approximations are
designed to work.

In this thesis, a study of deep inelastic scattering events is presented. In such collisions,
the electron interacts with the constituents of the proton. Because of the large momentum
transferred in the collision, the interacting quark will change its flight direction and try
to escape the proton. If the scattered quark is a sea quark it has been produced through
quantum fluctuations, and depending on the complexity of the fluctuations it might be
accompanied by additional partons, created in a so-called initial state (and/or final state)
cascade. However, (anti-)quarks and gluons are never observed directly, due to the special
properties of the strong force. As the strong field between the escaping partons and the
rest of the proton is stretched out, it will break up and new configurations of quarks and
anti-quarks will be formed, resulting in a collimated flow of new hadrons, which can be
observed in the detector. Such collimated flows of hadrons are called jets, and are believed
to reflect the properties of the original (anti-)quarks or gluons. The full scattering process is
illustrated by a schematic diagram in Figure 1.14. In this analysis, events with at least two
jets are selected. Such events, called dijet events, are already at leading order in the strong
coupling constant (αs) directly sensitive to both the quark and gluon content of the proton,
and are thus suitable for testing various aspects of QCD. The aim of the analysis presented
here is to investigate regions where predictions based on the DGLAP approximation fail to
describe the experimental data. In the DGLAP approximation, the transverse momentum
kT of the interacting gluon is restricted due to ordering in virtuality of the propagating
partons in the initial state cascade. However, this approximation is not valid at small values
of the longitudinal momentum fraction of the interacting gluon, xg, and new dynamics with
non-ordering in virtuality of the initial state cascade is expected. In this region, the kT of
the interacting gluon is not restricted, but can take any kinematically allowed value. The
azimuthal angle ∆φ∗ between the two jets in a dijet event is directly sensitive to the kT

of the interacting gluon and is thus an appropriate observable when trying to distinguish
between DGLAP and non-DGLAP parton evolutions. Dijet cross sections as a function
of ∆φ∗ can also be used to constrain the unintegrated (kT dependent) gluon densities
which are used in non-DGLAP parton evolutions. The event sample used in this analysis
is a factor three larger than that used in the previous H1 analysis concerning azimuthal
correlations [12], and, due to an improved description of the hadronic final state, the cross
sections are presented differentially in ∆φ∗ for the first time in H1. Also, a fit of the
unintegrated gluon density is presented, in which a first attempt to constrain the intrinsic
transverse momentum distribution is performed.
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The structure of this thesis is as follows: in Chapter 1 an introduction to DIS and QCD
is given; kinematic variables are defined, and different orders of DIS processes are discussed,
including alternative ways of approximating higher order QCD radiation. Also, the Monte
Carlo event generators and fixed order QCD programs, used for correcting the measured
data for detector effects and QED radiation and for comparing with the data, are explained.
The HERA accelerator and the H1 detector, where special attention is payed to the detector
components used in the analysis, are presented in Chapter 2. The DIS and dijet selections
together with basic control plots are given in Chapter 3, while migrations, corrections,
efficiencies, systematic errors and the final results of the measurement are presented in
Chapter 4. Chapter 5 describes how the unintegrated gluon density is determined by a fit
to the dijet cross sections presented in Chapter 4 in combination with dijet cross sections
from an earlier H1 measurement.





Chapter 1

Introduction to DIS and QCD

1.1 Introduction to Deep Inelastic Scattering

Within the Standard Model [13], lepton-nucleon interactions are mediated either by γ,
Z0 (neutral current interactions) or W± (charged current interactions) bosons. At HERA
energies, where electrons with energy 27.6 GeV collide with 920 GeV protons, Z0 and W±

exchange can mostly be neglected since such processes are suppressed due to the high
masses of the exchange particles. Since a large momentum transfer between the electron
and the proton implies a small wavelength of the exchanged boson, it also means a high
resolution. If the momentum transfer is much larger than the proton mass (∼ 1 GeV), the
wavelength of the photon is small enough for it to resolve the structure of the proton, and
the photon then interacts with the constituents (partons) of the proton. Such scatterings
are always inelastic, i.e. the proton breaks up in the collision. They are therefore called
Deep Inelastic Scattering (DIS) events. In contrast, events where the momentum transfer
is smaller than the proton mass are called photoproduction events.

Figure 1.1 shows an electron with four-momentum Pe scattering off a proton with four-
momentum Pp via the exchange of a virtual photon with four-momentum q. After the
scattering, the electron is left with a four-momentum P

′

e and the proton breaks up into a
Hadronic Final State (HFS) with an invariant mass squared W 2 > m2

p.

It is useful to define some Lorentz invariant variables characterizing the event:

• The virtuality Q2 of the photon is defined as

Q2 ≡ −q2 = −(Pe − P
′

e)
2.

Since the photon is spacelike, Q2 > 0.

• Bjorken-x, defined as

xBj ≡
Q2

2Pp · q
,

which, in lowest order of the strong coupling αs, can be interpreted as the fractional
momentum of the proton carried by the interacting parton.

9



10 CHAPTER 1. INTRODUCTION TO DIS AND QCD
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Figure 1.1: A schematic view of a neutral current electron-proton scattering.

• The inelasticity

y ≡ Pp · q
Pp · Pe

,

which, in the rest frame of the proton, is the fractional energy of the incoming electron
carried by the photon.

• The invariant mass W of the hadronic final state,

W 2 ≡ (Pp + q)2.

• The invariant mass squared, s, of the system,

s ≡ (Pp + Pe)
2.

However, these variables are not all independent. Neglecting the proton mass, we get

Q2 = xBjys

and

W 2 = Q2 · 1 − xBj

xBj

.

Hence, only three of the five variables listed above are independent. Also, since s is a
constant, only two variables, for example xBj and Q2, need to be determined in order to
completely define the kinematics of the inclusive1 DIS event.

Neglecting Z0 and W± exchange and the proton mass, the differential DIS cross section
can be written as

d2σ

dxBjdQ2
=

4πα2

xBjQ4

(

y2xBjF1(xBj , Q
2) + (1 − y)F2(xBj , Q

2)
)

. (1.1)

Here, α is the fine structure constant and F1 and F2 are structure functions parameterizing
the partonic structure of the proton. The absorption of transversely polarized photons

1Inclusive means integrating over all HFS configurations.
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is described by F1 while longitudinally polarized photon interactions are described by
FL = F2 − 2xBjF1. Equation (1.1) can then be written as

d2σ

dxBjdQ2
=

4πα2

xBjQ4

(−y2

2
FL(xBj , Q

2) + (1 − y +
y2

2
)F2(xBj , Q

2)

)

. (1.2)

For processes where Q2 is small, FL can normally be neglected since longitudinally polar-
ized photons are suppressed. The term 4πα2

xBjQ4 in Equations (1.1) and (1.2) is the classical

Rutherford formula for a pointlike particle scattering off a pointlike target, while the struc-
ture functions are corrections due to the structure of the proton [14].

1.2 QPM and the Leading Order DIS Process

The Quark Parton Model (QPM) [15, 16] postulates that the proton consists of partons,
identified as three valence quarks (uud) which carry the quantum numbers of the proton,
and quark-antiquark pairs. The model is defined in the infinite momentum frame, Pp → ∞,
where the proton is Lorentz contracted to a disk and the partons, which are assumed to be
pointlike, are time dilated such that they are effectively free. In the QPM, DIS processes
are thus elastic, incoherent scatterings of electrons off free quarks, as shown in Figure 1.2,
and as a consequence, the structure functions are independent of the scale Q2,

Fi(xBj , Q
2) → Fi(xBj),

a phenomenon called scaling. Also, if quarks have spin 1/2, then FL = 0 and the Callan-
Gross relation [17] is valid:

F2(xBj) = 2xBjF1(xBj).

In the QPM

F2(xBj) =
∑

i=q

e2
i xBjfi(xBj), (1.3)

where ei and fi(xBj) are the charge and parton density function (PDF) of parton i, respec-
tively. The PDF can be interpreted as the probability distribution of finding a parton i in
the proton carrying a fraction xBj of the proton energy.

The scaling behaviour of the structure functions was first observed in 1969 [18,19] (for
xBj ∼ 0.25), and the Callan-Gross relation was confirmed the same year [20, 21], giving
strong support for the QPM. However, later experiments [22–25] found that the structure
functions do, in fact, depend on Q2. Recent data [26] showing this scaling violation (and the
scaling at xBj ∼ 0.25) is shown in Figure 1.3. Also, it seemed that only about 50% of the
proton momentum was carried by the quarks. The theory of Quantum Chromo Dynamics
(QCD), in which the QPM process (Figure 1.2) is the lowest order approximation, offers
solutions to these problems.
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Figure 1.2: A schematic view of the QPM process. The electron scatters off a free quark
via the exchange of a photon.

1.3 Perturbative Quantum Chromo Dynamics

The theory of strong interactions, QCD, introduces a new gauge boson, called the gluon, as
mediator of the strong force, and the concept of colour degree of freedom. The gluons couple
to all particles carrying this colour charge, and the strength of the coupling is denoted αs.
The colour charge can have three values: red, green and blue, and correspondingly for anti-
colours: anti-red, anti-green and anti-blue. Quarks (anti-quarks) carry one of these colours
(anti-colours), while the gluons themselves carry one colour and one anti-colour, making
gluon self-interactions possible. Hence, in QCD, the QPM process is corrected for real
and virtual gluons and quarks. In perturbative QCD (pQCD), this is done by expanding
amplitudes in a perturbation series in αs. For a given observable, the first non-zero term
in this expansion is called the Leading Order (LO) term, the following term is Next-to
Leading Order (NLO) and so on. For inclusive DIS, the LO term corresponds to the QPM
process and is thus of zeroth order in αs, O(α0

s), while the NLO term is O(α1
s). For dijet

production, the LO term is of O(α1
s), while the NLO term is O(α2

s), see Section 1.9.

When including for example the virtual loop corrections of Figure 1.4, ultraviolet di-
vergencies appear. They arise because the momentum of a virtual quark or gluon is unre-
stricted, making the loop integral divergent as the momentum P → ∞. These divergencies
can be regularized and absorbed into αs, using renormalization. In the renormalization
procedure2, a new scale is introduced, on which αs (and the coefficients in the perturbative
expansion) becomes dependent. This renormalization scale, µr, is an arbitrary parameter
of QCD, and physical quantities should not depend on it. However, cross sections calcu-
lated as truncated series in αs, will depend on µr through the dependence of αs on the scale
(running of αs(µr)), meaning that a choice of µr must be made. Most often the hardest
scale in the process is chosen, e.g. µ2

r = Q2. The scale dependence of αs(µr) is determined
by

µ2
r

∂αs

∂µ2
r

= β(αs) = −β0

4π
α2

s −
β1

(4π)2
α3

s + ... (1.4)

2There are different ways of performing renormalization, e.g. the MS and MS schemes.
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Figure 1.3: The proton structure function F2 for different values of xBj (denoted x in the
figure) as a function of Q2, showing scaling at xBj ∼ 0.25 and scaling violation at smaller
and larger xBj. Also shown are Standard Model predictions from a QCD fit to the data,
where the shaded bands indicate the theoretical errors, and an extrapolation (broken line)
to lower Q2 values than the starting value of the fit. The figure is taken from [26].
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Figure 1.4: Virtual loop corrections giving rise to ultraviolet divergencies.

where

β0 = 11 − 2

3
nf

β1 = 102 − 38

3
nf

and nf being the number of active flavours, i.e. the number of quarks with m2
q << µ2

r.
Equation (1.4) describes how αs depends on the scale µr, but does not give any absolute
value of αs at any scale. Hence, αs has to be determined experimentally by measuring
various observables sensitive to the strong coupling. The values of αs obtained at the energy
of the measurement can then be transformed to any other scale using Equation (1.4). The
scale chosen for comparison of αs from different measurements is by convention the mass
of the Z0 boson, µ0 = MZ . With this experimental input, αs is completely determined
at all scales by Equation (1.4). In the one-loop approximation (only considering the first
term in Equation (1.4)), the solution becomes

αs(µ
2
r) =

αs(µ
2
0)

1 + αs(µ2
0)

β0

4π
ln
(

µ2
r

µ2
0

) . (1.5)

Here, we see that at large µ2
r , αs(µ

2
r) becomes small, meaning that partons probed at a large

scale (small distances) will behave as free particles, a property called asymptotic freedom.
However, as µ2

r becomes smaller, αs becomes larger, and eventually the expansion cannot
converge. As a consequence of this, pQCD breaks down at small scales µr ≈ 200 MeV.

The current world average value of the strong coupling constant is [27]

αs(M
2
Z) = 0.1176 ± 0.0020.

1.4 Factorization

With the introduction of QCD and the possibility of gluon emissions, the number of possi-
ble DIS processes increases dramatically. Although the relative contribution of the process
decreases with a factor αs for each added gluon, these higher order corrections are crucial
when doing precision measurements or studying exclusive observables. However, the ad-
dition of gluons introduces divergencies in the perturbative calculations, originating from
gluons that are collinear to the radiating parton, i.e. when the transverse momentum of
the gluon approaches zero, kT,g → 0. Just as the ultraviolet divergencies could be absorbed
into the running of αs, with the introduction of a renormalization scale µr, these collinear
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Figure 1.5: Schematical interpretation of factorization: the scale µf separates the pertur-
bative (σ̂i) and non-perturbative (fi) part of the cross section.

divergencies can be absorbed into parton density functions (PDFs) with the introduction of
a cut-off parameter µf , on which the PDFs become dependent (running of the PDFs). The
PDFs describe, in LO, the probability of finding a specific parton inside a hadron (in this
case the proton), and are completely process independent. The scale µf can be interpreted
as the scale (or transverse momentum kT ) separating (factorizing) the perturbative and
non-perturbative parts of the cross section, schematically shown in Figure 1.5. Hence, all
partons with kT < µf are included in the PDF, while partons with with kT > µf are taken
care of perturbatively. Therefore, the scale µf is called the factorization scale. Exactly how
the PDFs depend on the factorization scale is described by so called evolution equations,
which will be discussed in the next section.

The most common way to separate the perturbative and the non-perturbative parts
of the cross section is by applying collinear factorization, in which the partons are
approximated to be collinear with the proton [28]. Then, the ep cross section can be
written as

σ(ep → e
′

X) =
∑

i

∫ 1

0

dx

x
fi(x, µ2

f) · σ̂i, (1.6)

where fi is the process independent parton density function and σ̂i is the perturbatively
calculable partonic cross section. The function fi(x, µ2

f) can be interpreted as the density
of partons of type i carrying a longitudinal momentum fraction x probed at a scale µ2

f .
Note that x = xBj only in LO DIS. The collinear approximation, in combination with the
DGLAP approximation (see Section 1.5), has been successfully applied to F2 and various
jet cross sections [29]. However, when x becomes small the collinear approximation is
expected to lose its validity. An alternative approach is then to use kT-factorization in
which the ep cross section can be written as

σ(ep → e
′

X) =
∑

i

∫

dx

x
dk2

TFi(x, kT )σ̂i. (1.7)

Here, both the partonic cross section σ̂ and the so called unintegrated parton density



16 CHAPTER 1. INTRODUCTION TO DIS AND QCD

F(x, kT ) depend on kT so that the kinematics of the partons are properly taken into
account.

In the factorization procedure, one is, to some extent, free to choose which finite terms
that are absorbed into the PDFs in addition to the infinite ones. For example, in the
(collinear) DIS scheme, all finite terms are absorbed into the PDFs, such that

F2(x, Q2) =
∑

i=q,q̄

e2
i xfi(x, Q2) (1.8)

which is similar to Equation (1.3) except that here F2 and fi depend on Q2. In the MS
scheme, however, only some finite terms are absorbed, so that Equation (1.8) is only true
in LO. Since the PDFs are different in these schemes, also σ̂ is scheme dependent.

1.5 Higher Order DIS Processes and Evolution Equa-

tions

As already mentioned, the LO DIS process (O(α0
s)) is a simple quark-photon scattering

and is completely independent of QCD. The next term in the expansion series, the Next-
to-Leading Order (NLO) term is of O(αs) and corresponds to the processes with one gluon
emission, i.e. QCD-Compton (QCD-C) and Boson-Gluon Fusion (BGF), seen in Figure 1.6.
Also, the virtual corrections shown in Figure 1.7 need to be included. Separately, these
diagrams diverge, but when added the divergencies exactly cancel. Due to the complexity
of the calculations and the rapidly increasing number of contributing diagrams, the full set
of NNLO DIS matrix elements has not yet been calculated.

In addition to the partonic cross section σ̂, one must also have the PDF at the factor-
ization scale µf . Although it is not possible to calculate the size and shape of the PDFs
in pQCD, it is possible to derive so called evolution equations that predict the scale de-
pendence of the PDFs. Once a starting PDF has been chosen at some starting scale µ2

f,0,
its size and shape at any other scale µ2

f can be determined by these equations. (This is in
analogy to Equation (1.4) which determines αs at any scale µ2

r once a starting value has
been chosen at some starting scale µ2

r,0.)

The evolution equations describe how a mother parton is split into two daughter par-
tons, one of which is emitted whereas the other continues as a propagator parton. This
propagator is then split into two daughters and so on, creating a parton ladder as illus-
trated in Figure 1.8. Hence, evolution equations can be used to approximate higher order
emissions beyond what has been calculated analytically. Three different evolution equa-
tions, derived under different approximations and valid in different phase space regions,
are presented below.

1.5.1 DGLAP Evolution

The DGLAP [8–11] evolution equation is of the form

dfj(x, µ2
f )

d lnµ2
f

=
αs(µ

2
f)

2π

∑

i

∫ 1

x

dx′

x′
fi(x

′, µ2
f)Pi→j,k(z) (1.9)
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a) b)

Figure 1.6: The first order real corrections to the QPM process, a) QCD-Compton and b)
Boson-Gluon Fusion.

Figure 1.7: The O(αs) virtual corrections to the QPM process.
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mentum fractions and four-vectors of the propagator gluons, respectively, while pi are the
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where fi(x, µ2
f) is the PDF and Pi→j,k(z) describes the probability that a parton i is split

into two partons j and k with fractions z = x
x′ and 1−z of the original parton momentum,

respectively. The possible splittings (in QCD) are q → qg, g → qq̄ and g → gg. For
example, the probability that a gluon splits into two gluons is in LO given by

Pg→g,g(z) =
1

1 − z
− 2 + z(1 − z) +

1

z
(1.10)

where the terms 1
1−z

and 1
z

are called the singular terms, since they give infinite contribu-
tions when z → 1 and z → 0, respectively. The Equation (1.9) thus describes the change
in the probability of finding a parton of type j with momentum fraction x as we increase
the scale µ2

f . This is the scaling violation mentioned in Section 1.2.

The DGLAP equation in lowest order resums terms of the form (αs ln(
µ2

f

µ2
f,0

))n, where

n denotes the order of the term, in the expansion of the cross section. These so-called
Leading Log (LL) terms correspond to parton ladder diagrams where the virtualities of the
propagator gluons are strongly ordered (see Figure 1.8 and put Q2 ∼ µ2

f),

µ2
f ≫ |k2

n| . . . ≫ |k2
1| ≫ |k2

0|. (1.11)

Here, ki is the four momentum of parton i. This means that in each splitting i → i + 1, j
one can approximate k2

0 = k2
1 = . . . k2

i = 0 compared to k2
i+1, and since k2

i = m2
i these

partons are considered to be massless. Since |k2| =
k2

T

1−x
, the ordering in virtuality implies
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that also the transverse momenta of the propagator partons are strongly ordered (at small
x) according to

µ2
f ≫ |k2

Tn| . . . ≫ |k2
T1| ≫ |k2

T0| (1.12)

where kT i = (0, kxi, kyi, 0). In the collinear approximation one approximates k2
T0 = k2

T1 =
. . . k2

T i = 0 such that the PDF and the partonic cross section is independent of kT , as seen
in Equation 1.9. The DGLAP approximation is only valid in the region where x is not too

small and µ2
f is large, such that the terms (αs ln(

µ2
f

µ2
f,0

))n will dominate the cross section.

1.5.2 BFKL Evolution

The BFKL [30–32] evolution equation resums the terms (αs ln( 1
x
))n in the expansion, and

is thus only valid at small xBj and moderate scales. It is of the form

dG(x, k2
T )

d ln( 1
x
)

=

∫

dk
′2
T G(x, k

′2
T ) · K(k2

T , k
′2
T ), (1.13)

where the function K is the splitting kernel equivalent to P in Equation (1.9). Following
the convention in [33], the parton density is now labeled G. In deriving the BFKL equation,
strong ordering in longitudinal fractional momentum is assumed,

x0 ≫ x1 . . . ≫ xn ≫ xBj . (1.14)

This implies that the emitted gluons will take a large fraction of the propagator momentum.
However, there is no ordering in k2 or k2

T , so the collinear approximation can not be used,
and the incoming partons of the matrix elements must be taken off-shell (the particles can
have a virtual mass). Due to this non-ordering, a parton carries out a “random walk”
in kT and can diffuse into the non-perturbative region. This is avoided by introducing a
lower cut-off kT,0 in the integral of Equation (1.13). Another important consequence of the
non-ordering in kT is that unintegrated parton densities (uPDFs) must be used in (1.13),
i.e. they must depend on kT . The uPDFs can be related to the (integrated) parton densities
by

xf(x, µ2
f ) ≈

∫ µ2
f

0

dk
′2
T

k
′2
T

G(x, k
′2
T ).

It is not a strict equality, because the integration over kT is performed up to the factoriza-
tion scale µf while there can still be a tail in the uPDF with kT > µf .

1.5.3 CCFM Evolution

The CCFM [34–37] evolution equation is valid both at large and small x, since it resums
terms of both the form (αs ln( 1

x
))n and (αs ln( 1

1−x
))n. This means that at large x the

CCFM evolution will be DGLAP-like, and at small x it will be BFKL-like. The CCFM
evolution includes angular ordering in the initial state cascade in order to account for
coherence effects, which means that the angles ξ of the emitted partons with respect to the
propagator increases as one moves towards the hard interaction,

Ξ ≫ ξn . . . ≫ ξ1 ≫ ξ0, (1.15)
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where the maximum allowed angle Ξ is set by the quark box,

pq + pq̄ = Υ(Pp + ΞPe) + ~Qt.

This is written in the Sudakov (or lightcone) variables, where pq, pq̄, Pe and Pp are the four
momenta of the produced quarks, the electron and the proton, respectively (see Figure 1.8),
Υ and ΥΞ are the positive and negative light-cone momentum fractions of the quark pair,
and ~Qt is the sum of the transverse momentum vectors of the quark pair. The momenta
of the emitted gluons i can be written similarly,

pi = υi(Pp + ξiPe) + pti, ξi =
p2

ti

sυ2
i

, (1.16)

where υi = (xi−1 −xi) is the momentum fraction of the emitted gluon, pti is the transverse
momentum of the gluon, and s = (Pp + Pe)

2 is the squared center of mass energy. Here, it
is assumed that all particles are massless. The CCFM equation is written as

q̄2 d

dq̄2

xA(x, k2
T , q̄2)

∆s(q̄2, µ2
0)

=

∫

dz
dφ

2π

P̃ (z, k2
T , (q̄/z)2)

∆s(q̄2, µ2
0)

x′A(x′, k
′2
T , (q̄/z)2) (1.17)

where
q̄i =

pti

1 − zi

= xi−1

√

sξi (1.18)

is the rescaled transverse momenta of the emitted gluons, zi = xi

xi−1
and A(x, k2

T , q̄2) is the

unintegrated gluon density function (uGDF) which now depends on two scales, kT and q̄.
In CCFM, q̄ plays the role of factorization scale. In this formalism, (1.15) becomes

q̄i > zi−1q̄i−1. (1.19)

When z → 1 we have q̄i > q̄i−1, i.e. ordering in rescaled transverse momentum, which
means that the evolution is DGLAP-like. In the limit z → 0 the angular ordering gives
no restrictions on q̄. Also, (1.14) holds because of the definition of z. This means that the
evolution is BFKL-like.

The Sudakov form factor ∆s appearing in Equation (1.17) describes the probability
that there are no emissions from the starting scale µ2

0 to the maximum rescaled transverse
momentum q̄2

max. Most often, only the singular terms in the CCFM splitting function are
considered

P̃g→gg(z, k
2
T , (q̄/z)2) =

ᾱs(q
2
i (1 − zi)

2)

1 − zi

+
ᾱs(k

2
T i)

zi

∆ns(zi, k
2
T i, q

2
i ), (1.20)

where the non-Sudakov form factor ∆ns originates from the fact that, in CCFM and BFKL,
all virtual corrections in the gluon vertex are automatically taken into account, see Fig-
ure 1.9.

1.5.4 The Colour Dipole Model

The Colour Dipole Model (CDM) [38–41] offers an alternative way of simulating higher
order QCD radiation. The basic idea is that dipoles are spanned between qq̄-, qg-, q̄g- and
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Figure 1.9: Virtual corrections included by the non-Sudakov form factor ∆ns.
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Figure 1.10: In a) is shown a schematic picture of a dipole spanned by a qq̄ pair. The dipole
radiates a gluon, which creates two new dipoles between the qg and the q̄g pairs, while the
original dipole is destroyed. The triangle in b) shows the allowed phase space for radiation
from a dipole of energy W in ln(p2

t )− η space. The thick line indicates the modified phase
space due to the spatial extension of the proton.
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gg-pairs and these dipoles emit gluons independently. Any gluon emission from a dipole will
produce a kink in the original dipole resulting in two new dipoles, see Figure 1.10 a). In DIS,
the first dipole is stretched between the proton remnant and the struck quark, meaning
that all radiation will take place between these. Hence, the CDM does not distinguish
between initial and final state radiation.

QCD radiation from a dipole of energy W is restricted by

pt · cosh(η) <
W

2

where pt and η = −ln(tan(θ/2)) is the transverse momentum and pseudo-rapidity in the
dipole center of mass system of the emitted gluon. For dipoles spanned between pointlike
particles, this can be visualized as a triangle in ln(p2

t )− η space, as seen in Figure 1.10 b).
However, the phase space is somewhat modified (thick line) if one of the particles has a
spatial extension, as is the case in ep-collisions.

The CDM produces radiation that is non-ordered in transverse momentum kT [42–45],
like BFKL and CCFM.

1.5.5 The Resolved Photon Model

The resolved photon model includes the possibility for the photon to fluctuate into a qq̄-
pair, thus acquiring a hadronic structure. The qq̄-pair may either be on-shell, i.e. a vector
meson, or off-shell. Assuming massless quarks, the fluctuation time is characterized by the
virtuality Q2 of the photon, tf ∼ 1

|Q|
. If there is a second hard scale in the process, for

example a high ET jet, the interaction time will be ti ∼ 1
|ET |

. Since the hadronic structure

of the photon will be significant if tf & ti, it follows that resolved photons will become
important when E2

T & Q2. Of course, this will most often be the case in photoproduction
events where the photons are quasi-real (Q2 ∼ 0 GeV2). Because of the second hard scale
in the process, two gluon ladders may be evolved: one on the photon side towards the hard
matrix element, and one from the proton side, see Figure 1.11. Even if both these ladders
are evolved using DGLAP, the ordering in kT will be broken.

In analogy to the proton, a structure function for the photon may be defined as3

F γ
2 (xγ, µ

2
f) =

∑

i

e2
i xγf

γ
i (xγ , µ

2
f), (1.21)

where xγ is the longitudinal momentum fraction of the photon carried by the parton, µf is
the factorization scale, e is the electric charge and f γ

i (xγ , µ
2
f) is the probability of finding

a parton of type i with longitudinal momentum fraction xγ in the photon when probed at
a scale µf . Also, unintegrated parton densities for the photon may be used for example in
the CCFM scheme.

3This is in the DIS scheme.
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Figure 1.11: In the resolved photon model two DGLAP ladders are evolved, one from the
photon side and one from the proton side, thus breaking the kT -ordering.

1.6 Hadronization and Fragmentation

As already mentioned, pQCD calculations are only applicable when the scale µr is large,
such that αs(µ

2
r) is small, and the perturbative series converge. At these small distances,

the partons behave more or less like free particles inside the hadron. At smaller scales, or
larger distances (∼ 1 fm), the quarks may not escape as free particles, but are confined
in the colourless hadrons with integer charges, that are observed in nature. The bridge
between the “parton level”, where pQCD predictions are made, and the “hadron level”
which is observed4, must thus be made using phenomenological models.

There are a number of different hadronization/fragmentation models, for example In-
dependent Fragmentation [46, 47], Cluster Fragmentation [48, 49] and String Fragmenta-
tion [50–54]. The latter one, which is implemented in the MC generators used in this thesis,
will briefly be described below.

In the Lund String Model, the colour field between a quark and an anti-quark is com-
pressed to a tube because of gluon self-interactions. Due to this string-like structure, the
energy density per unit length in the string is constant κ = 1 GeV/fm. Therefore, if the two
quarks are moving away from each other, the potential energy in the string will increase
linearly with the distance (neglecting the Coulomb interaction), and when the stored en-
ergy is large enough, the string breaks, creating a qq̄-pair using a tunnelling mechanism, see
Figure 1.12. The probability of creating a qq̄ pair with mass m and transverse momentum
pT is

exp(−π(m2 + p2
T )

κ
)

4Actually, what is observed are tracks and clusters on the “detector level”, which are then corrected to
the “hadron level”.



24 CHAPTER 1. INTRODUCTION TO DIS AND QCD

tim
e 
t

distance d

q q

q q

b)a)

Figure 1.12: a) A schematic picture of a string between a quark and an anti-quark. b) A
quark and an anti-quark moves away from each other, stretching a string between them.
When the potential energy in the string is large enough, the string breaks up and a qq̄-pair
is created. This procedure continues until the energy is too low to produce new qq̄-pairs.

resulting in a suppression of heavy quark production u : d : s : c ≈ 1 : 1 : 0.3 : 10−11. The
fragmentation process continues until there is no energy left to create new qq̄-pairs.

Baryons may be produced either by combining quarks and anti-quarks from qq̄ splittings
to qqq and q̄q̄q̄ states, or by allowing diquark pairs (qq, q̄q̄) to be created when the string
breaks. These diquarks (anti-diquarks) can then be combined with a quark (anti-quark)
to form a baryon (anti-baryon).

1.7 Jet Production and Reconstruction

In the fragmentation procedure, a parton may hadronize into many final state particles,
thereby “hiding” the underlying partonic event. However, it is expected that the hadrons
are collimated in the direction of the original parton, especially if the original parton is
hard (has a large kT ). The properties of such a collimated flow of particles, called a jet,
are therefore expected to reflect the properties of the original parton. A good correlation
between the “parton level” and the “hadron level” is essential for making experimental
tests of pQCD. There is no unique procedure for grouping hadrons into jets, and many
models exists, for example the JADE [55] and the CONE [56] algorithms. The one used in
this thesis is the longitudinally invariant inclusive kT algorithm [57–59], which is infrared
safe to all orders (i.e. the results are stable with respect to soft gluons) [60] and has smaller
hadronization corrections than other jet algorithms [61].

1.7.1 The Inclusive kT Algorithm

The inclusive kT algorithm takes as input a list of objects, or protojets, for example partons,
hadrons, or combined objects (clusters and/or tracks, see Section 2.3) depending on which
level it is applied. This list is then iterated, and in each iteration, a “distance” is calculated
for each pair of protojets, and also a “distance” between each protojet and the proton
direction. Either two protojets are combined into one protojet or a protojet is removed
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from the list of protojets and added to the list of jets depending on which distance is the
smallest. Because of this procedure, the number of protojets are decreasing and the number
of jets are increasing for each iteration. When there are no protojets left, the algorithm
returns the list of jets. The iteration procedure may be summarized as follows:

1. For each pair of protojets {i, j}, the distance parameter

di,j = min(E2
T,i, E

2
T,j) ·

(

(ηi − ηj)
2 + (φi − φj)

2
)

is calculated.

2. For each protojet, the distance between the protojet and the beam direction is cal-
culated as

di = E2
T,iR

2.

R defines the radius of a cone in the (η,φ) plane, and most often R = 1 is chosen [59].

3. Find the minimum of all {di,j, di}. If the minimum is one of di,j, then the protojets
i and j are merged into a new protojet k according to some recombination scheme
(see Section 1.7.2). Of course, protojets i and j are removed from the list and jet k
is added. If di is the minimum, then protojet i is removed from the list of protojets
and added to the list of jets. The procedure is then repeated starting from step 1.

1.7.2 Recombination Schemes

There are many possibilities of combining the four-vectors of two protojets into one. For
example, one can consider the protojets as real particles and simply add the four-vectors,

Pk = Pi + Pj .

In this scheme, sometimes called the E-scheme, the resulting (proto-)jet k has a mass mk 6=
0. To preserve the longitudinal boost invariance, the rapidity 1

2
lnE+Pz

E−Pz
of the (proto-)jets

must be used when calculating the distance parameter di,j instead of the pseudorapidity
η = −ln(tan(θ/2)). Also, ET , η and φ have to be recalculated from the four-vectors in
each step. Computationally, it can be more convenient to use a recombination scheme
where the (proto-)jets are constructed using ET , η and φ directly. This is done in the
ET recombination scheme [62], where the scalar transverse energies are added, while η
and φ are weighted with ET and added according to

ET,k = ET,i + ET,j

ηk =
ET,iηi + ET,jηj

ET,k

φk =
ET,iφi + ET,jφj

ET,k

.

Here, the invariance under longitudinal boosts is preserved because the (proto-)jets k are
massless. There are also other possibilities, for example adding the four-vectors and then
rescaling either the energy E or the momentum |P̄ | such that the resulting four-vector is
massless. Of course, different recombination schemes will give different jet properties, and
which scheme to apply is a matter of convention. In this analysis, the ET recombination
scheme has been used.
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Figure 1.13: Jet production in the HCM frame: a) the QPM diagram and b) the QCD-C
process.

1.7.3 The Hadronic Center of Mass Frame

In the laboratory frame, where the electron and the proton collide head-on, the hadronic
final state must balance the transverse momentum of the scattered electron. However, the
influence of the scattered electron can be removed with a boost to the Hadronic Center of
Mass (HCM) frame, where the photon collides head-on with the proton,

Pγ + Pp = 0.

Hence, in LO (if the intrinsic kT of the partons are neglected) the photon collides with
a quark which back-scatters with a transverse momentum5 E∗

T = 0, see Figure 1.13 a).
(In the HCM frame, transverse momenta are perpendicular to the proton direction, which
defines the z-axis.) In NLO, for example the QCD-C process shown in Figure 1.13 b), the
photon and the incoming quark are collinear while the gluon and the outgoing quark, i.e. the
produced jets, are emitted back-to-back. In higher order processes, the parton involved in
the hard scattering may receive a non-zero transverse momentum from additional initial
state gluon emissions, such that the dijet system (for example the two hardest jets) no
longer need to balance in transverse momentum. Non back-to-back jets can of course also
be produced if the scattered quark emits gluons after the hard collision. This means that,
in the HCM frame, the dijet configuration is directly sensitive to the underlying QCD
process.

The kT -algorithm was originally constructed for the Breit frame (sometimes called the
brick wall frame), defined by

Pγ + 2xPp = 0.

In lowest order, the quark has a four-momentum xPp, meaning that in the Breit frame
the photon has exactly twice the four-momentum of the quark, but with opposite sign.
The quark thus back-scatters, leaving the collision with the same four-momentum as it
had before the collision, but in the opposite direction. The Breit frame and the HCM
frame are very similar, in fact, they are only separated by a longitudinal boost. Since the
kT -algorithm used here is invariant under longitudinal boosts, it can also be applied in the
HCM frame.

5In this thesis, variables in the HCM frame are labeled with a ∗.
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Figure 1.14: A schematic picture showing the separate parts describing a DIS event: Matrix
Element (ME), Initial and Final State Parton Showers (ISPS, FSPS) and Hadronization
(HADR).

1.8 Monte Carlo Event Generators

The description of a DIS event may be separated in different parts such as the matrix
element, initial and final state parton showers and hadronization, schematically shown in
Figure 1.14. Monte Carlo (MC) Event Generators, in which all these parts are imple-
mented and treated independently from each other, produce complete DIS events which
can undergo the same analysis procedure as the data. In this way, one can study effects of
using different evolution equations for parton showers, hadronization effects, the effects of
using different quark masses and PDFs etc. Also, by running the simulated events through
a detector simulation one can obtain detector correction factors which can be applied to
data, see Section 4.2. Below, a short description of the MC generators used in this thesis is
given. The parameters and the PDFs used in the MC generators are summarized Table 1.1.

RAPGAP

Rapgap [63] uses LO matrix elements and evolves the parton ladder according to the LL
DGLAP equation. QED radiation is included using Heracles [64], while hadronization is
made using the Lund string model as implemented in Jetset [65,66]. In addition, Rapgap
can simulate diffractive DIS and photoproduction events, and offers the possibility of using
resolved photons in DIS.

CASCADE

The program Cascade [67,68] uses the CCFM equation for producing the parton ladder,
and thus uses (LO) off-shell ME and unintegrated parton densities. Presently, only gluon
densities are used in the evolution. In addition to ep collisions, pp, pp̄, γp and γγ collisions
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are implemented. Jetset/Pythia [69] is used for hadronization. In this analysis, two
different unintegrated gluon densities are used: A0 [70] and J2003 set2 [71]. They have
been fitted to the same F2 data and describe these data equally well. However, they differ
on a number of points, e.g. that A0 was evolved using a splitting function including only
the singular terms, see Equation (1.20), while for J2003 set2 also non-singular terms were
included [71, 72]. In addition, they have slightly different starting distributions and treat
the soft regions differently, see Chapter 5.

ARIADNE

Ariadne [73] simulates parton showers according to the colour dipole model. While the
QCD-C process is naturally included in the model, the BGF matrix element is included
explicitly. Ariadne needs to be used in combination with another MC program, for
example Rapgap or Lepto, which takes care of the hard interactions, hadronization etc.

LEPTO

Lepto [74] generates LL Parton Showers according to the DGLAP equation convoluted
with LO matrix elements, while Jetset is used for hadronization. Lepto also includes
options for producing rapidity gaps without pomeron exchange. QED corrections are
however not included, but can be taken into account using Django [75], which is an
interface between Lepto and Heracles.

PHOJET

The Phojet [76,77] generator is in this thesis used for simulating photoproduction events,
in order to estimate the background contribution from such processes. Phojet also in-
cludes hadron-hadron, photon-hadron and photon-photon processes, where the hadrons
can be either protons, antiprotons, neutrons or pions.

1.9 Fixed Order QCD Calculations

In this thesis the measured data are compared to NLO 2-jet and NLO 3-jet calculations
using the program NloJet++ [78]. This program can be used to calculate LO 2-jet, NLO
2-jet, LO 3-jet, NLO 3-jet and LO 4-jet cross sections in DIS. Although it makes use of
the Monte Carlo technique, it should not be confused with the Monte Carlo generators
described previously. The NLO programs do not approximate higher order corrections
using parton showers and do not include hadronization, but instead calculate the ma-
trix elements of the LO and NLO processes in such a way that the infrared and virtual
divergencies cancel.

1.9.1 LO 2-jet Cross Section

The diagrams contributing to the LO dijet cross section are shown in Figure 1.6. The
QCD-Compton (QCD-C) process (Figure 1.6 (a)) is initiated by the quark densities in
the proton, while the Boson Gluon Fusion (BGF) process depends on the gluon density.
At small values of x the gluon density dominates the proton, meaning that the largest
contribution to the LO dijet cross section comes from BGF. The matrix elements for BGF
diverge if one of the partons is collinear to the initial gluon, or if one of the partons is
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b) d)c)a)

Figure 1.15: NLO dijet cross section corrrections to BGF (a,b), and QCD-C (c,d).

soft. Also the QCD-C ME is divergent if the emitted gluon is collinear to the incoming
or scattered quark, or if one of the outgoing partons is soft. All these divergencies are,
however, connected to the regions E∗

T → 0 or η∗ → ∞, and can hence be avoided by
requiring a minimum transverse momentum E∗

T > 0 for the partons. Because of energy
and momentum conservation, the two outgoing partons will be emitted back-to-back in the
HCM frame (∆φ∗ = 180◦).

1.9.2 NLO 2-jet Cross Section

In next-to leading order, the dijet cross section includes contributions from additional real
and virtual gluons; four examples are shown in Figure 1.15. Separately, these diagrams
diverge. The virtual contributions diverge because the momenta of the virtual gluons can
take any value, and the real contributions diverge when the gluons are either collinear with
one of the quarks, or when the gluon energy Eg → 0. However, the divergencies from the
virtual contributions exactly cancel the divergencies from the real contributions, leaving
the resulting cross sections finite.

It has been shown [79–81] that this cancellation, however, is incomplete if one applies
symmetric E∗

T cuts to the two jets. With symmetric cuts, one can have configurations
where the two jets are back-to-back and have the same (but opposite) E∗

T . On the parton
level this corresponds to two back-to-back partons, so any gluon radiation is excluded. If
the two partons are slightly decorrelated, soft gluon radiation is allowed but kinematically
constrained. As a consequence, some of the contribution from the virtual diagram that
should have been cancelled by the real diagram is left uncancelled. This leads to unphysical
behaviour, e.g. that the dijet cross section with symmetric cuts, E∗

T1, E
∗
T2 > E∗

T,MIN , is
smaller than the dijet cross section with asymmetric cuts E∗

T1 > E∗
T,MIN + ∆ and E∗

T2 >
E∗

T,MIN for small values of ∆ (in [12, 80] this was shown to be true for ∆ < 1 GeV) even
though the phase space is larger for the case with symmetric cuts. Of course, this behaviour
is not seen for the measured data. The remedy for this is, from the theoretical side, to
perform a full resummation of the cross section, or, from the experimental side, to apply an
asymmetric cut such that the NLO 2-jet cross section calculation gives resonable results [82,
83]. However, it has been argued [84] that even asymmetric cuts will not be sufficient
to completely solve this problem. In this analysis, symmetric cuts have been applied
because NLO dijet cross section calculations including full resummation have recently been
performed for the first time [81].
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Figure 1.16: The figure shows an NLO 2-jet calculation of the number of dijet events with jet
cuts E∗

T1 > (5 + ∆) GeV and E∗
T2 > 5 GeV as a function of ∆ compared to the prediction

of Cascade for (a) 0 < ∆φ∗ < 180◦ and (b) 0 < ∆φ∗ < 170◦. The distributions are
normalised to the total number of dijet events.

The NLO 2-jet cross section will, however, not be calculated correctly by the Nlo-
Jet++ program if symmetric cuts are applied. This will only be a problem in the bin
170 < ∆φ∗ < 180◦, where the two jets are back-to-back, since for smaller ∆φ∗ we have an
implicit asymmetric cut on the jets. Hence, for ∆φ∗ < 170◦ the NLO 2-jet cross section will
not suffer from these incomplete cancellations. This problem is illustrated in Figure 1.16
where the number of dijets as a function of ∆, defined above, has been calculated in NLO
and using Cascade in the angular ranges 0 − 180◦ and 0 − 170◦, respectively.

1.9.3 NLO 3-jet Cross Section

The NLO 3-jet cross section is calculated by using the diagrams in Figure 1.17 (here, only
the BGF diagrams are shown). In the leading order diagram, Figure 1.17 (a), there are
three hard partons which could produce three jets in the final state, and in (b) and (c) this
diagram is corrected with a soft or virtual gluon.

Additional complications arise when calculating NLO 3-jet cross sections but only de-
manding two jets, as done in this analysis. The problematic configuration is when we have
two hard jets which are back-to-back in φ∗, i.e. ∆φ∗ ≈ 180◦. Here, any additional gluon
is forced to be soft, giving an infrared divergence. This divergence should be cancelled by
the diagram with two virtual gluons shown in Figure 1.18. This, however, is not included
in the NLO 3-jet calculation (had it been included, it would be a NNLO 2-jet calculation)
which thus diverges in this phase space region.

The NLO calculations are made on the parton level, i.e. the particles involved are quarks
and gluons. To be able to compare with data, one must either correct the calculations
for hadronization effects and the data for detector effects and QED radiation, so that
both the calculations and the data are given on the hadron level, or correct the data for
hadronization effects so that the measurement is presented on the parton level. In this
analysis, the data are corrected to the hadron level, and the NLO calculations are thus
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a) b) c)

Figure 1.17: Diagrams contributing to the NLO 3-jet cross section: leading order (a), and
NLO corrections (b) and (c).

Figure 1.18: Example of a virtual correction included in a NNLO 2-jet calculation, but not
in the NLO 3-jet calculations.
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corrected for hadronization effects. This is done using Monte Carlo event generators, by
simulating events with and without fragmentation/hadronization and taking the ratio of
these as a correction factor applied to the NLO calculations,

CHadr =
σHadr

σNoHadr

.

Lepto/Ariadne Cascade Rapgap NloJet++

Version 6.51/4.10 1.2007 3.1 2.0
Parameters Tuning from [85] Default Default –
Proton PDF CTEQ6L [86] A0 CTEQ6L CTEQ6M [86]

J2003 set2
Photon PDF – – SaS-G 1D [87] (RES only) –

µ2
r P 2

T ŝ+ < P 2
T,Dijets > Q2+ < P 2

T,Dijets >
(

PT,1+PT,2

2

)2

µ2
f P 2

T ŝ + Q2
t Q2+ < P 2

T,Dijets >
(

PT,1+PT,2

2

)2

Table 1.1: Summary of the parameters and the PDFs used in the Monte Carlo event gen-
erators and the fixed order calculations in this analysis. < p2

T,Dijets > is the mean squared
transverse momentum of the dijet system from the matrix element, Qt is the vectorial sum
of the transverse momentum of the quark pair, while PT,i denote the transverse momentum
of the selected jet i.

1.10 Azimuthal Correlations in Dijet Events

In the HCM frame, the photon and the proton collide head-on. Using collinear factoriza-
tion, the interacting gluon in the leading order BGF process will not have any transverse
momentum kT , which means that the photon and the gluon collide head-on. Due to en-
ergy and momentum conservation, the two outgoing quarks will be emitted back-to-back,
i.e. with ∆φ∗ = 180◦. In higher order processes, the outgoing quarks can emit final state
radiation, leading to a decorrelation of the produced jets (∆φ∗ < 180◦). Configurations
with ∆φ∗ < 180◦ can also occur when the interacting gluon emits initial state radiation,
and thereby acquires a transverse momentum. The azimuthal angle ∆φ∗ between the two
jets is related to the transverse momentum kT of the interacting gluon according to

k2
T = P ∗2

T,1 + P ∗2
T,2 + 2P ∗

T,1P
∗
T,2cos(∆φ∗),

where P ∗
T,i is the transverse momentum of the jets i = 1, 2 in the HCM frame.

In the DGLAP approximation, the propagator gluons are ordered in virtuality, leading
to an ordering in transverse momentum

µ2
f ≫ |k2

Tn| . . . ≫ |k2
T1| ≫ |k2

T0| (1.22)

as described in Section 1.5. The kT of the interacting gluon is thus restricted by µf . In
BFKL and CCFM, there is no such restriction, since the propagator gluons are ordered
in x and ξ, respectively. The gluons can in these evolution schemes have any kinemati-
cally allowed kT , leading to more decorrelation of the dijets, on the average, compared to
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DGLAP. A measurement of the azimuthal correlations in dijet events could thus be sensi-
tive to different parton dynamics in the initial state cascade. Also, in the kT -factorization
approach the interacting gluon can have a non-zero kT already in leading order, since un-
integrated PDFs are used. This means that the azimuthal correlations are sensitive to
different uPDFs, and may be used to further constrain the intrinsic kT distribution of the
gluons.

Dijet azimuthal correlations has been measured previously in ep-collisions [12, 88, 89]
and in pp̄-collisions [90, 91]. For theoretical discussions, see e.g. [92–107].





Chapter 2

HERA and the H1 Experiment

This chapter gives an introduction to the HERA facility and presents an overview of the
H1 detector and its components, especially those important for the analysis presented in
this thesis.

2.1 The HERA Collider

The HERA collider, situated at the DESY research laboratory in Hamburg, Germany,
is the only electron-proton collider in the world, and with a circumference of 6.3 km it
is also one of the largest accelerators existing. It consists of two separate storage rings,
accelerating electrons/positrons and protons to 27.6 GeV and 920 GeV, respectively. This
corresponds to a center of mass energy

√
s ≈ 318 GeV. Before 1998, the proton beam

energy was 820 GeV. A schematic view of the HERA facility is shown in Figure 2.1. Also
shown is the system of pre-accelerators used to produce and accelerate the electron- and
proton bunches before they are injected in HERA. During data taking, there are up to 220
bunches colliding with 96 ns intervals, giving a bunch crossing rate of 10.4 MHz.

HERA hosts three experiments: H1, ZEUS and HERMES, which are situated in the
North, South and East Hall, respectively. H1 and ZEUS are collider experiments with main
physics interests of measuring the proton structure, investigating the properties of QCD and
searching for new physics. HERMES, however, uses only the (polarized) electron beam on
a polarized gas target (H2, D, 3He, 4He) which is injected into the beampipe. The main
objective concerns the spin properties of the proton. Until 2003, a fourth experiment,
HERA-B, operated in the West Hall. HERA-B was designed to study B-physics and
especially the CP violation in B-decays, and used the proton beam on a fixed wire target.

After more than 15 years of operation, HERA was shut down on June 30, 2007.

2.2 The H1 Experiment

The H1 detector, shown in Figure 2.2, is designed to measure the energy and momentum
of the final state particles from the electron-proton interactions. It consists of layers of

35
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Figure 2.1: A schematic view of the HERA facility (right), also showing the system of
pre-accelerators (left).

detector components positioned concentrically around the beampipe 1 . Surrounding the

interaction point are the tracking detectors 2 which enable momentum measurements of
charged particles travelling in the 1.15 T solenoidal magnetic field provided by the super-
conducting coil 6 . (Another superconducting coil 7 compensates for this field such that

the beam is not distorted.) Next, there are the electromagnetic 4 and hadronic 5 Liq-
uid Argon (LAr) calorimeters measuring the total energy of the particles. Some particles,
mostly muons, may escape the inner parts of the detector and enter the muon chambers
9 and the instrumented iron 10 in which energy leakage from the LAr calorimeter may
be detected.

Because of the asymmetric energies of the electron and proton beams, the center of mass
will be boosted in the proton direction, which also defines the z-direction in the righthanded
H1 coordinate system, giving more activity in this region. Therefore, the detector has
finer granularity and more detector components in the forward (proton) direction. The
backward (electron) direction is covered by the Spaghetti Calorimeter (SPACAL) 12 ,
making electron tagging at larger angles possible.

In the following subsections, the detector components relevant for this thesis will be
described. A detailed description of the H1 detector can be found in [108,109].

2.2.1 The Tracking System

The tracking system, shown in Figure 2.3, consists of three major components: the Central
Tracking Detector (CTD), the Forward Tracking Detector (FTD) and the Backward Drift
Chamber (BDC). Three kinds of detector types are used: drift chambers, Multi-Wire Pro-
portional Chambers (MWPC) and semiconductors. The drift chambers provide precision
measurements of tracks and, since the particle trajectories are bent in the magnetic field,
the transverse momenta and charges of the particles can be determined from the curvature
of these tracks. The MWPCs have worse spatial resolution than the drift chambers, but are
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The H1 Detector
Weight: 2800 tons

3Size: 12 x 10 x 15 m

Figure 2.2: A schematic view of the H1 detector.
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Figure 2.3: A side view of the tracking system in the H1 detector. Also shown is the
SPACAL calorimeter.

instead faster, and are therefore suitable for triggering purposes. Semiconductors, which
are used in the central (CST) and backward (BST) silicon trackers are more accurate than
both the drift chambers and the MWPCs. On the other hand, they are much more ex-
pensive, and thus only used in a small volume close to the beampipe. The silicon trackers
are essential components when identifying secondary vertices from the decay of short-lived
particles.

The Central Trackers

The main detectors of the central tracking system are the two Central Jet Chambers,
CJC1 and CJC2. These two drift chambers, covering polar angles of 11 < θ < 169◦ and
26 < θ < 154◦ respectively, have anode sense wires1 in the z-direction and by measuring
the drift time, a resolution of 170 µm in the (r,φ) plane is achieved. The z coordinate can
be determined with a resolution of about 22 mm from the ratio of the measured charges
at both ends of the sense wires (charge division method).

Two other drift chambers, the Central Inner and Outer z-chambers (CIZ and COZ)
have wires perpendicular to the beam axis, giving a z coordinate resolution of 300 µm and
a resolution of about 30-60 mm in the (r,φ) plane. Using the complementary information
from the CJC1, CJC2, CIZ and COZ, one can achieve a momentum resolution of

σp

p2
< 0.01 GeV−1.

The Central Inner and Outer Proportional chambers (CIP and COP) are used for a fast

1CJC1 and CJC2 have 720 and 1920 sense wires, respectively.
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Figure 2.4: The backward drift chamber consists of four octagonal double-layers (left),
where the drift cells of the two layers are staggered by half a drift distance (right).

determination of the interaction time and the position of the z-vertex. This information is
used by the first level trigger system (see Section 2.2.5).

The Backward Drift Chamber

The Backward Drift Chamber (BDC) covers the polar angle region 153 < θ < 178◦ and,
in this analysis, is used for determining the azimuthal and polar angles of the scattered
electron (φe and θe). As seen in Figure 2.4, the BDC consists of four octagonal double-
layers with wires perpendicular to the radial vector. This allows a precise determination
of the polar angle; the resolution is σθ < 1 mrad. Each layer is rotated 11.25◦ in φ with
respect to the next one, which gives a spatial resolution in the r−φ -plane σr−φ = 0.8 mm.
The drift cells are shifted by half a drift cell to resolve left-right ambiguities.

The Forward Trackers

Particle tracking in the forward region is managed by the forward trackers, which cover the
polar angles 5 < θ < 25◦. Like the central tracking system, the FTD consists of both drift
chambers and MWPCs. The FTD is split up in three identical layers, each one consisting
of two drift chambers, one MWPC, used for triggering, and one transition radiation detec-
tor. One of the drift chambers has wires parallel to each other and perpendicular to the
beampipe (called planar in Figure 2.3) and one has wires strung radially. The obtained
momentum resolution is σp

p2 = 0.03 GeV−1 while the spatial resolution is σx,y 6 200µm.

2.2.2 Calorimeters

The Liquid Argon Calorimeter

Most particles except muons, neutrinos and most of the beam remnant are absorbed in
the LAr calorimeter (Figure 2.5), covering polar angles 4 < θ < 154◦. It consists of an
electromagnetic part, with a thickness of 20-30 radiation lengths, and an hadronic part,
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nominal interaction point

Figure 2.5: A side view of the Liquid Argon calorimeter, showing the absorber plate struc-
ture (upper) and the cell structure and the Big Tower segments used for triggering (lower).

4.7-8 nuclear interaction lengths thick, depending on the impact angle of the particle. In
both parts, liquid Argon is the active material, while lead and iron are used as passive
materials in the electromagnetic and hadronic part, respectively. The LAr calorimeter is
further split up into 8 wheels which in turn consists of individual cells. In total, there are
45000 cells with dimensions 4× 4× 4 cm3 and 10 ×10× 10 cm3 in the electromagnetic and
hadronic part, respectively. The achieved electromagnetic resolution is

σem

E
≈ 0.11
√

E[GeV]
⊕ 0.01 (2.1)

while the hadronic energy resolution is

σhad

E
≈ 0.5
√

E[GeV]
⊕ 0.02, (2.2)

where ⊕ means addition in quadrature.

The Spaghetti Calorimeter

The SPACAL, using scintillating fibres and lead as active and passive material, respectively,
covers polar angles 153 < θ < 178◦ and can therefore be used for detecting the scattered
electron in events with 1 . Q2 . 100 GeV2. Like the LAr calorimeter, the SPACAL consists
of an electromagnetic and an hadronic part, both 25 cm thick, corresponding to 28 radiation
lengths and 2 interaction lengths, respectively. This makes it possible to effectively separate
electrons from pions, which otherwise may be misidentified as the scattered electron, see
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Figure 2.6: A cross-section of the electromagnetic part of the SPACAL. Also shown are the
supermodules, with 4 × 4 cells in each, and the VETO layers (the white area surrounding
the beam pipe).

Section 3.2.4. The electromagnetic part consists of 1192 cells, 4.05 × 4.05 × 25 cm3, while
the hadronic part has 136 cells, 12× 12× 25 cm3, see Figure 2.6. Also shown in the figure
are the supermodules, consisting of 4 × 4 cells, and the VETO layer close to the beam pipe.
High activity in this layer indicates that some energy may have leaked out of the detector,
meaning that the energy measurement may be wrong. The obtained energy resolutions are

σem

E
≈ 0.07
√

E[GeV]
⊕ 0.01

and
σhad

E
≈ 0.56
√

E[GeV]
.

2.2.3 The Time of Flight System

The Time of Flight (ToF) system is used for rejecting background events, originating from
beam interactions with gas in the beam pipe (the vacuum in the beam pipe is ∼ 10−10
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Figure 2.7: A schematic zy-view of the H1 detector, indicating the position of the Backward
(BToF), Forward (FToF) and Plug (PToF) Time of Flight systems.

kPa) and with the beam pipe itself. It consists of three scintillators (Backward, Forward
and Plug ToF at z = −275 cm, z = 790 cm and z = 540 cm, respectively, see Figure 2.7)
and two scintillator veto walls (z = −810 cm and z = −650 cm), giving a time resolution
of about 1 ns. Using this information together with knowledge of the exact bunch crossing
rate, one is able to reject events outside the time window characteristic for e-p collisions.

2.2.4 The Luminosity System

The luminosity system, shown in Figure 2.8, measures the rate of the Bethe-Heitler pro-
cess ep → epγ, and since the cross section of this process is very accurately known, one
indirectly measures the luminosity. The electrons, having lost some energy in the pro-
cess, are deflected by a bending magnet and escapes the beam pipe through a window at
z = −27.9 m, thus hitting the Electron Tagger (ET) at z = −33.4 m. The photons leave
the beampipe at z = −92.3 m, where the beam pipe bends upwards, and hit the Photon
Detector (PD) located at z = −102.8 m. In front of the PD is a lead Filter (F), protecting
the PD from synchrotron radiation, and a Veto Counter (VC) which makes it possible to
determine whether the photon has showered in the lead filter. Using this technique, the
luminosity during 1999-2000 has been determined with a precision of 1.5%.

2.2.5 The Trigger System

Although the bunch crossing rate at HERA is about 10.4 MHz, the rate of e-p interactions
is much smaller. However, the rate of background events, originating from beam-gas and
beam-wall interactions, from synchrotron radiation and from cosmic radiation, is several
orders of magnitude larger than the e-p event rate. Reading out the whole detector for
each event and then selecting the “good” events would result in a very large dead time.
Instead, a four level trigger system is used for filtering out the actual e-p events from the
background using increasingly sophisticated methods, thus minimizing the dead time.

Level 1

The first level in the trigger system uses 192 trigger elements combined into 128 subtriggers.
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Figure 2.8: A schematic view from above of the beam transport system and the luminosity
monitor (lower figure), showing the position of the Electron Tagger (ET) and the Photon
Detector (PD) with respect to the electron and proton beam pipes. Note that the proton
beam pipe bends upwards, as can be seen in the figure on top in the middle. In the top
left figure, energy depositions in the ET of a typical Bethe-Heitler process is shown. Also
indicated is the electron beam pipe. The top right figure shows the energy depositions in the
PD of the same event. The top middle figure shows a side view of the PD system, where
VC and F stands for the Veto Counter and the lead Filter, respectively. Also shown is the
proton beam pipe which bends slightly upward.
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A trigger element may for example be an energy deposition above some threshold in the
SPACAL, a reconstructed z-vertex or a ToF requirement. If one of the 128 subtriggers has
triggered, the event is kept and passed on to Level 2. However, some subtriggers have a
very high trigger rate and must be prescaled, i.e. some triggered events are rejected while
the events that are kept are given a weight. The Level 1 trigger system makes the decision
to keep or reject the event within 2.3 µs, corresponding to 24 bunch crossings, and reduces
the rate from about 100 kHz to 1 kHz. In order to avoid a large dead time, the events from
the following bunch crossings are fed into pipelines, until a decision has been made.

Level 2

With a decision time of 20 µs, a more sophisticated analysis of the event can be made
at Level 2. Here, two different trigger methods are used: neural network and topological
triggers. If the event is kept, a full readout of the detector starts and the event is passed
on to Level 3. However, Level 3 was not implemented during the HERA I running period
(1992-2000) so the event is therefore passed on directly to Level 4. The typical output rate
of Level 2 is 50 Hz.

Level 4

At this level, the full information of the event is used and a fast online reconstruction of
the event is performed. Here, the L1 and L2 triggers are verified, and if possible the event
is assigned to one or more event classes, e.g. “Electron in SPACAL” or “Jets (ET > 5
GeV)”. If it is not possible to assign the event to a class, the event is either rejected or
downscaled. If the triggering of the previous levels can be verified, the output is written
to tape and the event is passed on to Level 5. Maximal decision time is 100 ms and the
output rate is typically 10 Hz.

Level 5

At Level 5, a complete (offline) reconstruction of the event is made and the event is com-
pressed and written to Data Summary Tapes (DST), which are used for further analyses.

2.3 Combined Objects

The hadronic final state is reconstructed using the complementary information from the
trackers and the calorimeters according to the HADROO2 algorithm [110]. First the al-
gorithm selects tracks, removes clusters which are identified as noise and (temporarily)
removes tracks and clusters which are associated with leptons. Then the first track in the
list (the one with lowest pT ) is extrapolated into the calorimeter. Clusters in the elec-
tromagnetic (hadronic) part that lie within a cylinder of radius 25 cm (50 cm) from the
track extrapolation are matched to the track. The algorithm then compares the energy
resolution of the track obtained from the tracker (assuming that the particle is a pion) and
the expected energy resolution of the calorimeter using Equation (2.2), assuming the same
energy in the calorimeter as obtained from the measurement on the track. The information
which is expected to have the smallest uncertainty is then used to compute the four-vector
of the combined object. The track and the matched clusters are removed in order to avoid
double counting, and the next track in the list is extrapolated. If there are still clusters
left after all the tracks have been extrapolated, HFS objects are defined using these clus-
ters. Since the energy resolution of the tracks decreases with increasing pT , and the energy
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resolution of the calorimeters increases with increasing E, the track information is mostly
used for E . 25 GeV while the calorimeter is used for E & 25 GeV (these numbers are for
central tracks with 20 < θ < 160◦).

The HADROO2 method described above uses the track information more often than
the FSCOMB algorithm previously applied in H1 [111]. This can be seen by sorting
the combined objects in each jet depending on if it is treated as a track or a cluster,
calculating the scalar PT sum of these combined objects and then forming the PT fractions
PT,track/PT,Jet and PT,cluster/PT,Jet. In Figure 2.9, this PT fraction is shown as a function
of PT,Jet and ηJet for Monte Carlo events simulated by Django(CDM) and reconstructed
using HADROO2 and FSCOMB, respectively. As can be seen, the track information is used
for about 60% of the combined objects in a jet in the HADROO2 algorithm, while it is less
than 40% when using FSCOMB. This fraction decreases with increasing PT in agreement
with the fact that the uncertainty in the track energy increases with increasing PT of the
track. It is interesting to note that the track fraction decreases more in the FSCOMB
scheme compared to HADROO2. Also, the track PT fraction decreases dramatically in
the forward direction (large ηJet) due to the low efficiency of the forward tracker during
1999-2000. The more frequent use of the track information in HADROO2 results in better
resolutions of the jet observables compared to FSCOMB (see Figure 4.51).

2.4 Detector Simulation

The response of the H1 detector to an event can be simulated using H1SIM [112], which
is based on GEANT [113]. H1SIM includes detailed information about the detector and
its components, such as resolutions, inefficiencies, dead material and the exact position of
each subdetector. The unfolding of the data can then be performed by using Monte Carlo
generated events as input to H1SIM.
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Figure 2.9: The PT fraction of combined objects treated as tracks and clusters, as a function
of PT and η of the jet using the FSCOMB and HADROO2 algorithms, respectively.



Chapter 3

Event Selection and Reconstruction

This chapter presents the selection of runs, DIS events and dijet events. Also, the quality
of the DIS and dijet samples are investigated.

3.1 Run Selection

In this analysis, the e+p data collected by the H1 detector during 1999-2000 are used,
corresponding to a luminosity of 64.3 pb−1. The events are grouped into different runs,
during which experimental conditions, such as subdetector High Voltage (HV) status, are
relatively unchanged. Run conditions may, however, change slightly during a run period.
There can for example be a sudden drop of HV for a detector component. For a run to be
included in this analysis, it is demanded that the HV is on for the following subdetectors:
LAr, SPACAL, CJC1, CJC2, CIP, COP, BDC, ToF and the Luminosity system. Runs
with a total luminosity < 0.1 nb−1 are rejected, since this is an indication of unstable run
conditions. Some runs with poor run quality and shifted z-vertex are also excluded. After
this run selection, 3.8 · 108 events remain.

3.2 DIS Selection

The selection of DIS events is almost completely based on a determination of the kinematics
from the scattered electrons. However, other cuts also need to be made in order to suppress
background and exclude data from non-functioning parts of the detector.

3.2.1 Trigger

As already mentioned in Section 2.2.5 only events satisfying certain trigger conditions
are read out and analysed. In the analysis presented here, the events must fulfill the
requirements of the S0||S61 triggers, where || means a logical OR. S0 and S61 are defined
as

47
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S0 = (SPCLe IET > 2) && BG
S61 = (SPCLe IET > 2 || SPCLe IET Cen 3) && DCRPh THig && zVtx sig && BG

where && means a logical AND. The main trigger element for the S0 trigger is the
SPCLe IET > 2 element, which requires an energy deposition with an energy E > 6 GeV
in one of the outer1 SPACAL trigger towers. A trigger tower consists of 4 × 4 cells, and
there are 320 trigger towers, partly overlapping (sliding window method). In addition
to this, S61 has also SPCLe IET Cen 3 which is similar to SPCLe IET > 2 but for the
central part of the SPACAL. The DCRPh THig element triggers if there is at least one
track candidate in the CJC with a transverse momentum pT > 800 MeV, while zVtx sig
requires a signature for a z-vertex. BG is short for a collection of background rejection
trigger elements. The S0 trigger, being very inclusive, triggers on DIS events in the region
1 . Q2 . 100 GeV2 with a very high efficiency (the efficiency of the trigger selection is
presented in Section 4.2). However, because of the high trigger rate S0 is assigned a large
prescale factor, which means that some of the triggered events are not read out, while
the events that are read out are weighted. This means a loss in statistics. By combining
the S0 trigger with the more exclusive (and less efficient) S61 trigger, one selects some
events which otherwise would not be analysed because of the high prescale of the S0 trig-
ger. The mean prescales of the S0 and S61 triggers are 3.32 and 1.15, respectively, for the
1999/2000e+ period.

Since two subtriggers are used, each one with its own prescale weight (which may change
from run to run), one needs to combine these weights in such a way that no events are
missed or double counted. If we define rij as the raw trigger bit for subtrigger i in event
j, where rij can take the values 0 (event is not triggered) or 1 (event is triggered), and dik

as the weight for trigger i in run k, then the probability that trigger i will actually trigger
event j in run k is

Pijk =
rij

dik

.

The probability that it does not fire is then (1−Pijk), and the probability that none of N
triggers fires is

N
∏

i=1

(1 − Pijk).

The probability that at least one of the N triggers fires is thus

Pjk = 1 −
N
∏

i=1

(1 − Pijk)

and the weight of the event j in run k is

wjk =
1

Pjk

.

However, by averaging over all runs in a run period (in this case all runs during 1999/2000)
and taking the integrated luminosity

∫

Lk into account, the statistical uncertainties due to

1The SPCLe IET trigger is divided into a central ((-16 < x < 8 cm)&&(-8 < y < 16 cm)) and an outer
region.
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Figure 3.1: The z-vertex distribution of the data compared to Rapgap and
Django(CDM) before (left) and after (right) reweighting of the z-vertex in the Monte
Carlo simulations.

the changing trigger weights can be reduced. The weight for all events in the run period l
will then be [114]

wl =

∑

k∈l

∫

Lk
∑

k∈l

∫

LkPjk

.

3.2.2 Vertex Requirement

One of the basic requirements for reconstructing a DIS event is that there should be an
interaction vertex reconstructed from tracks. Since the protons in a bunch are distributed
according to a Gaussian (∼ 11 cm wide) along the z-direction, it follows that most colli-
sions take place around the nominal interaction point. However, beam-wall and beam-gas
collisions will be evenly spread out along the beam direction. Also, electrons colliding
with protons in the so-called satellite bunches (small clusters of protons not part of the
main bunches) will produce z-vertices far from the nominal interaction point. In order to
suppress such backgrounds a cut

−35 < zvtx < 35 cm

is made. In the MC files used for comparisons to data, the z-vertex was not correctly
simulated, and therefore the MC events were reweighted using a polynomial function to fit
the data, see Figure 3.1.

3.2.3 Σ(E − pz) Requirement

The sum of (E − pz) of the initial state particles i (i.e. the electron and the proton) can
be written as

∑

i=e,p

Ei − pz,i = (Ee − pz,e) + (Ep − pz,p) =

Ee − (−Ee) + Ep − Ep = 2Ee
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where pz,e = −Ee since the z-axis is defined as the direction of the incoming proton and the
mass of the proton and the electron has been neglected. Because of energy and momentum
conservation, the sum of (E − pz) over all final state particles j (including the scattered
electron) should give the same result,

∑

j

Ej − pz,j = 2Ee.

However, because of the limited resolution and acceptance of the detector, one will get a
distribution around 2Ee ≈ 55 GeV, rather than a narrow peak. Final state hadrons are
mainly lost in the beam pipe hole of the detector, but since these hadrons are close to
the beam direction of the proton they only give a small contribution to

∑

j Ej − pz,j. In
photoproduction events, where the scattered electron leaves through the beam pipe, this
sum will be significantly lower than expected. The same thing is true if the scattered
electron radiates a highly energetic photon in the beam pipe. Such scenarios can to a large
extent be cut away by requiring

35 <
∑

j

Ej − pz,j < 70 GeV.

3.2.4 Selection of the Scattered Electron

To ensure that the scattered electron is within the acceptance of the SPACAL and the
BDC, a requirement on the polar angle

156 < θe < 175◦

is imposed.

In order to reduce background from photoproduction (Q2 ∼ 0 GeV2), where the scat-
tered electron escapes down the beampipe undetected and a hadron in the SPACAL may
fake an electron signal, a cut on the energy of the scattered electrons

E
′

e > 9 GeV

is applied. This background can be further suppressed by requiring the (energy weighted)
cluster radius to be small,

RCLUS < 3.5 cm,

since hadronic clusters are expected to be broader than electromagnetic ones. RCLUS is
defined by

RCLUS =
ΣiEi

√

(xCLUS − xi)2 + (yCLUS − yi)2

ECLUS

,

where xCLUS, yCLUS and ECLUS are the coordinates and energy of the cluster, respectively,
and the sum runs over all cells i (with coordinates xi, yi and energy Ei) belonging to that
cluster.

Also, since the electromagnetic part of the SPACAL is 28 radiation lengths thick, one
expects that the scattered electron should be fully absorbed in the electromagnetic part.
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Therefore, the energy in the hadronic part behind the electromagnetic cluster is required
to fulfill

EHAD < 0.5 GeV.

There is, however, a possibility that a photon in the SPACAL together with a nearby
track from a hadron in the BDC is misidentified as an electron. This background can be
reduced by requiring the radial distance between the cluster center in the SPACAL and
the extrapolated track in the BDC to be

∆RBDC < 1.5 cm.

To make sure that all of the scattered electron energy has been detected and that no
energy has leaked out of the SPACAL, the energy in the VETO layers (see Section 2.2.2)
is demanded to be small,

EV ETO < 1 GeV.

3.2.5 Fiducial Cuts

During the 1999-2000 data taking period, some regions of the SPACAL suffered from high
background radiation and dead cells. This was not included in the detector simulation,
and therefore the following regions had to be excluded:

x2
SPAC + y2

SPAC < 152 cm2

( xSPAC − (−43.3 cm) )2 + ( ySPAC − (−27.5 cm) )2 < 6.72 cm2

( xSPAC − (− 6.4 cm) )2 + ( ySPAC − (−48.3 cm) )2 < 7.32 cm2

( xSPAC − ( 51.2 cm) )2 + ( ySPAC − ( 42.7 cm) )2 < 7.32 cm2

Here, (xSPAC ,ySPAC) are coordinates in the SPACAL system. Also, a region where the S0
trigger had a low efficiency was removed

(−17 < xSPAC < 9 cm) && (−9 < ySPAC < 17 cm). (3.1)

Figure 3.2 shows the activity in the SPACAL before and after applying the fiducial cuts.
If the scattered electron was identified in one of the regions above, the event was rejected.

3.2.6 Kinematic Phase Space

Having identified the scattered electron, the kinematic variables defined in Section 1.1 can
be reconstructed using the Electron method [115]

Q2 = 4EeE
′

ecos
2(θe/2)

y = 1 − E
′

e

Ee

sin2(θe/2)

x =
Q2

y · s.

(3.2)
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Figure 3.2: Hits in the SPACAL before (left) and after (right) applying the fiducial cuts.

Here, Ee = 27.6 GeV is the energy of the electron beam and E
′

e and θe is the energy and
polar angle of the scattered electron, respectively. Although these variables are already
constrained by the cuts in E

′

e and θe, additional cuts need to be made in order to avoid
unwanted phase space regions. The phase space of this analysis is defined by

5 < Q2 < 100 GeV2

0.1 < y < 0.7.

The lower Q2 and y cuts remove the photoproduction region, while the upper Q2 and y cuts
are slightly harder than the E

′

e and θe cuts. From Equation (3.2), this gives the restriction
∼ 8 · 10−5 < xBj <∼ 10−2. In Figure 3.3 the kinematic region in the (xBj , Q2) plane
covered in this thesis is shown. After the DIS selection 4.6 · 106 events remain.

It should be mentioned that there are ways of reconstructing the kinematic variables
other than the Electron method, e.g. the Hadron method [116] (where all particles except
the scattered electron are used), the Double Angle method [115] (where only the angles of
all final state particles are used) and the Sigma method [117] (which is a modification of
the hadron method). It has, however, been shown [117,118] that the Electron method gives
the best reconstruction of the kinematic variables in the phase space region considered in
this analysis.

3.3 Dijet Selection

The jet selection was performed using the inclusive kT algorithm (see Section 1.7) applied
to combined objects in the hadronic center of mass frame. The jets are required to be
within the acceptance of the LAr calorimeter and the CJC1, CJC2 and FTD,

−1 < ηj < 2.5.
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different DIS cuts.

Here, the pseudo-rapidity is defined as ηj = −ln(tan(θj/2)) where θj is the polar angle of
the jet in the lab frame. The jets are also required to fulfill

E∗
T,j > 5 GeV.

The two jets with lowest η (closest to the scattered electron) are selected as the dijet
system, such that jet 1 has the lowest η,

η1 < η2.

The cuts applied are summarised in Table 3.1. Approximately 1.2 · 105 events pass these
cuts.

3.4 DIS and Dijet Selection on the Hadron Level

The cuts presented above have been applied on the measured data and on detector simu-
lated Monte Carlo events. The hadron level DIS phase space is defined by

5 < Q2 < 100 GeV2

0.1 < y < 0.7

9 GeV < E
′

e

156 < θe < 175◦
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DIS Cuts

5 GeV2 < Q2 < 100 GeV2

0.1 < y < 0.7
9 GeV < E

′

e

156◦ < θe < 175◦

35 GeV < E − pz < 70 GeV
|zvtx| < 35 cm
Rclus < 3.5 cm
Ehad < 0.5 GeV
Eveto < 1.0 GeV

Dijet Cuts

5 GeV < E∗
Tj1,2

−1 < ηj < 2.5

Table 3.1: Summary of event selection cuts on the detector level.

while the dijet cuts are
5 GeV < E∗

Tj1,2

−1 < ηj < 2.5.

It is often preferred to correct to the hadron level where the electron has not emitted any
QED radiation, in order to correct for the mismeasurement of the kinematic variables. This
level will in the following be referred to as the non-radiative hadron level. An additional
correction is made such that particles with a lifetime τ > 0.8 · 10−8 s are considered to
be stable, since most of them will not decay before reaching the calorimeters. This is a
standard procedure in H1.

3.5 DIS Event Reconstruction

In Figure 3.4 are shown control distributions for the DIS sample on the detector level of the
variables Q2, xBj , y, E

′

e, θe and φe, where φe is the azimuthal angle of the scattered electron.
The data are compared to detector simulated events including initial and final state QED
radiation obtained using the Rapgap and Django(CDM) generators. Also shown are
predictions from the Phojet MC generator, simulating photoproduction background with
Q2 < 1 GeV2. As can be seen, the data are in general well described by the Monte Carlo
simulations.

3.6 Dijet Event Reconstruction

In Figure 3.5 control distributions of Q2, xBj , E
′

e and θe for the dijet event sample are
shown. The uncorrected data are compared to the detector level distributions obtained
using Rapgap and Django(CDM). Here, the distributions have been normalised to the
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Figure 3.4: Detector level DIS control distributions of Q2, xBj, y, E
′

e, θe and φe compared
to the predictions of Rapgap and Django(CDM). Also shown is the photoproduction
background as simulated by Phojet.
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Figure 3.5: Detector level dijet control distributions of Q2, xBj , y, E
′

e, θe and φe compared to
the predictions of Rapgap and Django(CDM). The distributions have been normalised
to the total number of events.

total number of events, since the total dijet cross section is different for Rapgap and
Django(CDM). Again, both MC generators are in good agreement with data although
Rapgap has some problems with describing the shape of the θe distribution. Figure 3.6
shows control distributions of the dijet variables E∗

T , η∗ and φ∗ for jet 1 (left) and jet 2
(right). Also here, both Rapgap and Django(CDM) are in good agreement with data,
except for high E∗

T of the second jet, where Django(CDM) overshoots data. This is
because of the well known feature of CDM producing too much energy in the forward
region [85,119–121]. The effect of this is only seen in jet 2 since it is always chosen as the
more forward going of the two jets. The fact that the Monte Carlo distributions are in
good agreement with the experimental data indicates that the detector is well simulated
and hence that the MC events can be used when correcting the data for detector effects.
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Figure 3.6: Dijet control distributions of E∗
T , η∗, φ∗ for jet 1 (left) and jet 2 (right) compared

to the predictions of Rapgap and Django(CDM). The distributions have been normalised
to the total number of events.
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Figure 3.7: Resolutions of E∗
T , η∗ and φ∗ for the selected jets in bins of η, obtained us-

ing Rapgap and Django(CDM). Also shown are Gaussian fits to the Django(CDM)
resolutions, where µ and σ are the mean and width of the Gaussian, respectively.

Figure 3.7 shows the resolutions of E∗
T , η∗ and φ∗ for the selected jets in bins of η. The

resolutions are defined as

E∗
T,RES =

E∗
T,DET − E∗

T,HAD

E∗
T,HAD

(3.3)

η∗
RES = η∗

DET − η∗
HAD (3.4)

φ∗
RES = φ∗

DET − φ∗
HAD (3.5)

where the index DET and HAD mean that the variable is taken on the detector (recon-
structed) and the hadron (generated) level, respectively. As seen, the resolution gets worse
in the forward direction for all three observables. This is because of the low efficiency of
the forward tracker during the 1999/2000 data taking period, with the consequence that
the jetfinder is more dependent on clusters in this region. Also, the E∗

T resolution is shifted
to negative values, meaning that the measured E∗

T on the detector level is generally too
low. This could in the future be corrected for by an improved hadronic energy calibration.



Chapter 4

Analysis Procedure and Results

In this chapter, the analysis procedure is described. Purity and stability, which are mea-
sures of data migrations, are defined and the results for the analysis bins are shown. The
unfolding procedure which has been used to account for migrations is described and the
systematic uncertainties are given. Finally, the measurement is presented in terms of two
inclusive dijet cross sections, dσ

dxBj
and dσ

dQ2 , two double differential dijet cross sections,
d2σ

dxBjd∆φ∗ and d2σ
dQ2d∆φ∗ , and one triple differential cross section d3σ

dQ2dxBjd∆φ∗ .

4.1 Purity and Stability

An event generated in one specific bin (e.g. in xBj) on the hadron level might, due to the
limited detector resolution, be reconstructed in another bin on the detector level. The
migrations into and out of a bin, when going from the hadron level to the detector level,
are measured by the purity (P) and stability (S), respectively. These quantities are defined
as

P = NHAD&&DET

NDET

S = NHAD&&DET

NHAD

where NHAD&&DET is the number of events which belong to the same bin on the hadron
and the detector level, and NDET (NHAD) is the number of events on the detector (hadron)
level in that bin. For example, P = 0.7 would mean that 70% of the events measured in
one bin on the detector level is also in that same bin on the hadron level, while 30% of the
events have migrated into that bin. Similarly, S = 0.7 would mean that 70% of the events
in one bin on the hadron level are also found in that bin on the detector level, while 30% of
the events migrate out of that bin. Obviously, P and S should be as close to 1 as possible.
Purity and stability have been calculated using both Rapgap and Django(CDM) and
the results are shown in Figure 4.1 for the inclusive dijet cross sections, and in Figure 4.2
- 4.7 for the ∆φ∗ decorrelation cross sections.

For the inclusive cross sections, the purity and stability are, in most bins, above 0.6 and
0.5, respectively while for the double and triple differential cross sections they are above
0.4. The main reason for the large migrations in ∆φ∗ is the smearing of E∗

T of the jets due

59
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Figure 4.1: Purity (P) and Stability (S) of dσ
dxBj

(upper) and dσ
dQ2 (lower).

to the limited detector resolution. This can be studied by using MC simulated events and
then applying a smearing on the jet variables E∗

T , η and φ, and on the kinematic variable
Q2 according to the resolutions obtained using the full detector simulation. The jets after
the smearing then define a “toy” detector level where one has full control of the smearing of
all variables. A short description of the “toy model” is given in Appendix A. The applied
resolutions of E∗

T , η, φ and Q2 in the toy model are seen in Figures 4.8 and 4.9, compared
to the resolutions obtained from the full detector simulation. Here, jets with transverse
energies as low as E∗

T > 3 GeV have been smeared in order to correctly take into account
the migrations over the jet cuts given by E∗

T > 5 GeV.

Figure 4.10 and 4.11 shows the purity and stability of d2σ/dQ2d∆φ∗ obtained using the
toy model and applying smearing on E∗

T (dotted line), E∗
T and η (large-dotted line), E∗

T , η
and φ (dash-dotted line) and E∗

T , η, φ and Q2 (dashed line) compared to the full detector
simulation (full line). It is clear that the largest effect comes from the E∗

T resolution,
while the φ resolution plays a more significant role at large ∆φ∗ where the ∆φ∗ bins are
small. The limited resolution in Q2 gives only a small effect, and the decrease due to the
η resolution is almost negligible.

At large ∆φ∗ the two jets are almost back-to-back and has mostly equal E∗
T , meaning

that any additional radiation is soft and does not create a jet. Therefore, at large ∆φ∗

the probability that different jets are chosen on the detector and the hadron level is small.
However, there can still be migrations over the E∗

T jet cut, such that two jets are found
on the detector level but only one or no jets on the hadron level, or vice versa, which
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Figure 4.2: Purity (P) of d2σ
dxBjd∆φ∗ obtained using Rapgap and Django(CDM).

will decrease the purity and stability. At smaller ∆φ∗ there is a larger probability that
three jets pass the cuts, and thus a larger probability that different jets are selected as
the dijet system on the detector level and the hadron level. This misidentification leads to
additional migrations in ∆φ∗ and a lower purity and stability. At very small ∆φ∗, four-jet
events begin to play a role, which further decreases P and S. This can be seen in Figure 4.12
where the fraction of dijet events with exactly two, three and four jets satisfying the cuts
in Section 3.3 are shown as a function of ∆φ∗ for the measured data. It is worth pointing
out that the migrations are not only between neighbouring ∆φ∗ bins. In fact, there are
migrations between the bin 0 < ∆φ∗ < 80◦ and all other ∆φ∗ bins, especially the bin
150 < ∆φ∗ < 170◦. Often this is due to events where three jets are found on the detector
and/or the hadron level, but where different jets are chosen as the dijet system, e.g. because
one jet does not pass the E∗

T on one of the levels, or because a jet on the hadron level is
clustered into two jets on the detector level. The migrations between all ∆φ∗ and xBj

bins, as well as over the dijet cuts, are shown for Django(CDM) in Figure 4.13 and 4.14.
Each bin corresponds to a ∆φ∗ bin in each of the xBj bins on the hadron (x-axis) and
the detector level (y-axis), except the first bin which is filled with events that has not
passed the DIS and/or dijet cuts. In Figure 4.13, each row has been normalised to the
total number of events in that row, and then multiplied by a factor 100; the numbers thus
describe, in percentage, the contribution from each bin on the hadron level to each bin on
the detector level, and the diagonal elements describe the purity of that bin. Similarly,
in Figure 4.14 each column has been normalised to the total number of events in that
column. The numbers then describe, in percentage, how many of the events in a certain
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Figure 4.3: Stability (S) of d2σ
dxBjd∆φ∗ obtained using Rapgap and Django(CDM).

bin on the hadron level that end up in a certain bin on the detector level; the diagonal
elements describe the stability.

4.2 Correction of the Data

Measured data are most often corrected for detector effects and QED radiation off the
electron, i.e. the data are presented at the “non-radiative hadron level”. This puts focus
on the underlying physical processes and makes it easier to compare published results with
those from other analyses and to MC simulations. There are several alternative methods
for unfolding the measured distributions, of which the bin-by-bin method is the most
straightforward one and among the most used methods at H1. The transition from the
“radiative detector level” to the “non-radiative hadron level” is then made by applying the
correction factor

Ci =
Ni,Had,Nonrad

Ni,Det,Rad

(4.1)

estimated from the MC to the measured data using a bin-by-bin procedure. Here, Ni,Had,Nonrad

and Ni,Det,Rad are the number of events in bin i on the “non-radiative hadron level” and
the “radiative detector level”, respectively. This correctly takes into account acceptance
effects of the detector. However, to correct for effects of limited resolution, the MC used
for the correction must in principle describe the “true” distribution on the hadron level
which we are trying to measure. Since this is not known, one may approach this situation
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Figure 4.4: Purity (P) of d2σ
dQ2d∆φ∗ obtained using Rapgap and Django(CDM).
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Figure 4.5: Stability (S) of d2σ
dQ2d∆φ∗ obtained using Rapgap and Django(CDM).
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Figure 4.6: Purity (P) of d3σ
dQ2dxBjd∆φ∗ obtained using Rapgap and Django(CDM). The

broken line at P = 0.3 is shown for reference.
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dQ2dxBjd∆φ∗ obtained using Rapgap and Django(CDM). The

broken line at S = 0.3 is shown for reference.
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Figure 4.8: The E∗
T resolutions in bins of E∗

T obtained from the detector simulation com-
pared to the resolutions applied in the toy model. E∗
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Figure 4.13: Migrations of events between all ∆φ∗ and xBj bins. For each bin on the
detector level, the numbers give the contribution in percentage from each bin on the hadron
level. The diagonal elements thus show the purity. The bin 0 describes events that do not
pass the DIS and/or dijet cuts. Empty bins has no entries.
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Figure 4.14: Migrations of events between all ∆φ∗ and xBj bins. For each bin on the hadron
level, the numbers give the contribution in percentage to each bin on the detector level. The
diagonal elements thus show the stability. The bin 0 describes events that do not pass the
DIS and/or dijet cuts. Empty bins has no entries.
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Figure 4.15: Correction factors as calculated by Rapgap and Django(CDM) for the
inclusive dijet cross sections dσ/dxBj (left) and dσ/dQ2 (right).

by reweighting the MC distributions such that the same weight is applied on both the
hadron and the detector level to obtain good agreement with data on the detector level.
The assumption is then that the MC gives a good description of the observable also on
the hadron level. Since this method demands an assumption of the “true” distribution
on the hadron level, it should not be used if migration effects are large (low purity and
stability) [122]. Furthermore, the bin-by-bin correction only takes into account migrations
between neighbouring bins, which is clearly not sufficient for the ∆φ∗ decorrelations.

The inclusive dijet cross sections, however, do not have significant migrations between
non-neighbouring bins and also have large purities and stabilities. Therefore the correction
of the inclusive cross sections are made using the bin-by-bin method. The correction factors
are shown in Figure 4.15. The large correction factors at low Q2 are due to the fiducial cuts
in the SPACAL (see Chapter 3) which removes many events close to the beampipe, i.e. at
low Q2. This of course also affects the correction factors for dσ

dxBj
. It has been checked

that if the influence of the fiducial cuts is removed, the correction factors are relatively flat
around 1.3− 1.4 for dσ

dQ2 , and the peak at small xBj disappears in the correction factors for
dσ

dxBj
.

In order to cope with large migrations, more sophisticated correction methods have to
be used. Another unfolding technique is to define a smearing matrix S, such that

D̄ = SH̄

where D̄ and H̄ represent vectors of events on the detector and the hadron level, respec-
tively, in each bin. The smearing matrix thus describes the detector response of the true
values H̄, giving the measured vector D̄. S can be estimated by simulating events on the
hadron level using a Monte Carlo event generator and then letting these events undergo a
detector simulation. The events can then be identified on both the hadron and the detector
level, and the migrations are thus known (provided the simulation is correct). If we define
the unfolding matrix U as the matrix that gives the hadron level vector if applied on the
measured data,

H̄ = UD̄,
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then a first guess would be to simply invert the smearing matrix such that

U = S−1.

However, this method has some disadvantages, for instance that the results are unstable
with respect to small statistical fluctuations in the determination of the smearing matrix.
Also, large statistical fluctuations may give negative number of events, and in extreme
cases, the inverse of the smearing matrix might not even exist.

Another way of determining the unfolding matrix U , without having to invert the
smearing matrix S, is by using Bayes’ theorem [122],

P (Ci|Ej) =
P (Ej|Ci) · P (Ci)

∑nC

l=1 P (Ej|Cl) · P (Cl)
, (4.2)

which expresses that the probability P (Ci|Ej) that an observed effect Ej (e.g. an event on
the detector level) was produced by a cause Ci (an event on the hadron level) is proportional
to the probability of the cause Ci to occur, P (Ci), times the probability that the cause
Ci will produce the effect Ej , P (Ej |Ci). The sum in the denominator runs over the total
number of causes nC and ensures that the probabilities are always 6 1. The estimation of
the number of events of cause Ci, n̂(Ci), is then

n̂(Ci) =
1

ǫi

nE
∑

j=1

P (Ci|Ej) · n(Ej) (4.3)

where nE is the total number of effects and n(Ej) is the measured number of effects Ej ,
i.e. the measured number of events in a certain bin j. Here we have also taken into account
the efficiency

ǫi =

nE
∑

j=1

P (Ej |Ci), (4.4)

since not all causes need produce an effect. Inserting (4.4) into (4.3) gives

n̂(Ci) =

nE
∑

j=1

Uij · n(Ej), (4.5)

where the unfolding matrix Uij is

Uij =
P (Ci|Ej)

ǫ
=

P (Ej|Ci) · P (Ci)

(
∑nE

l=1 P (El|Ci)) (
∑nC

l=1 P (Ej|Cl) · P (Cl))
. (4.6)

Here, P (Ej|Ci) represents the smearing matrix S which can be estimated using detector
simulated MC events. P (Ci), on the other hand, is the probability of having a cause Ci,
which is not known. However, by using an iterative procedure the unfolded distribution
from iteration k can be seen as a better guess of P (Ci) than the previous guess, and can
therefore be used as input for iteration k+1. In this way, P (Ci) can be completely unknown
from the beginning.

The iterative method relies on the assumption that the unfolded distribution is a better
estimator of P (Ci) than obtained in the previous unfolding, such that for each iteration one
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Figure 4.16: The smearing matrix for the lowest xBj bin, where each column (row) repre-
sents a ∆φ∗ bin on the hadron (detector) level, except the first column (row) which repre-
sents events that do not pass the DIS and/or the dijet cuts on the hadron (detector) level.
The first row was excluded in the Bayesian unfolding procedure.

is getting closer and closer to the “true” distribution. This is, however, not quite true. The
unfolded distribution does approach the true distribution during the first few iterations,
but after this it starts to deviate more and eventually converges. The optimal number of
iterations must thus be determined by Monte Carlo simulations.

This Bayesian unfolding technique was used to correct the ∆φ∗ distributions. For each
(xBj and Q2) bin a smearing matrix was estimated using detector simulated MC events
generated using Rapgap and Django(CDM). An example for the lowest xBj bin is shown
in Figure 4.16. Each column (row) corresponds to a ∆φ∗ bin on the hadron (detector) level,
except the first ones, which are filled with events not passing the DIS and/or dijet cuts. Due
to the large number of events in the bin (0, 0), large fluctuations occur between iterations,
not only in shape, but also in normalisation. This bin does not contain any information
about the migrations, and could be removed with a cut on the detector level. Since no cut
was found that efficiently removes the events in this bin and at the same time keeps the
other events in the first row, all events in the lowest row were excluded in the unfolding, but
were corrected for bin-by-bin. Thus, the Bayesian unfolding takes into account migrations
between all ∆φ∗ bins and the effect of events that migrate into the dijet sample from the
hadron to the detector level, but does not consider migrations out of the dijet sample. The
probabilities P (Ci) used as input to the first iteration were chosen to be the (normalised)
distributions on the hadron level obtained from the Monte Carlo program.

Having the smearing matrix and a first estimate of P (Ci), the unfolding matrix can be
calculated using (4.6) and an unfolded distribution be obtained. Before unfolding the data
one must first determine the optimum number of iterations. This is done by unfolding
detector simulated events from Rapgap using the smearing matrix and initial distribution
from Django(CDM), and comparing the unfolded distribution to the true (generated)
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Trigger Definition

S0 SPCLe IET > 2
S61 (SPCLe IET > 2 || SPCLe IET Cen 3) && DCRPh THig && zVtx sig
S39 LAr BR && LAr electron 2 && FwdRay T0 && LAr IF && LAr 2or3 electrons
S64 LAr IF > 1 && LAr Etrans > 2
S66 LAr IF > 1 && LAr Etmiss > 2
S67 LAr electron 1
S77 LAr Etmiss > 1

Table 4.1: Definition of triggers. Trigger elements for background rejection have been
omitted.

hadron level distribution from Rapgap for each iteration. In Figure 4.17 is shown the
cross sections for the two lowest xBj bins obtained after the first five iterations compared
to the true distribution, while Figure 4.18 shows the ratio of the unfolded distributions and
the true distribution. Figure 4.18 seems to indicate that the distribution from the second
iteration is closest to the true result. To quantify the difference between the distributions,
the fractional difference between the unfolded and the true distribution, summed over all
bins i in the histogram,

∑

i

|yi,unf − yi,true|
yi,true

(4.7)

is calculated. This variable is shown in Figure 4.19 for the first 30 iterations. As can be
seen, the best agreement is achieved after two iterations. Similar results has also been
seen in [123, 124] and is consistent with the recommendation in [125]. However, there is
no obvious reason why the second iteration should be the optimal choice. This has to
be determined in each analysis. Very similar results are also obtained if Django(CDM)
is unfolded using the smearing matrix from Rapgap, and also when unfolding d2σ

dQ2d∆φ∗

and d3σ
dQ2dxBjd∆φ∗ , although occasionally the first or the third iteration is closest to the true

distribution.

4.3 Trigger Efficiencies

It is also necessary to investigate the efficiencies of the trigger selection. The trigger ef-
ficiency is calculated using so-called monitor triggers, which should be chosen such that
the monitor trigger and the trigger under study do not have any trigger elements in com-
mon. However, the monitor triggers must be able to trigger the same type of events as the
physics trigger. For the trigger (S0||S61), which depends on the SPACAL calorimeter and
the tracking chambers, the combination (S39||S64||S66||S67||S77), which only depends on
the LAr calorimeter, is used as monitor trigger. The definition of each trigger is given in
Table 4.1, while Appendix B summarizes the definition of each trigger element.

The trigger efficiency is then defined by

ǫTrigger =
NMON&&TRIG

NMON
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Figure 4.17: The unfolded distributions obtained when unfolding Rapgap using the smear-
ing matrix from Django(CDM). The first five iterations (circles) are compared to the
true distribution (black line).
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Figure 4.18: The unfolded distributions obtained when unfolding Rapgap using the smear-
ing matrix from Django(CDM). The first five iterations (circles) are divided with the
true distribution.
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Figure 4.19: The difference between the unfolded and the true distributions, defined by
Equation (4.7), for the first 30 iterations. Rapgap was unfolded using the smearing matrix
generated by Django(CDM).
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Figure 4.20: Trigger efficiencies for the (S0||S61) trigger as a function of ∆φ∗ in bins of
xBj . Data are compared to the predictions of Rapgap and Django(CDM).

where NMON&&TRIG is the number of events triggered by both the selected trigger and the
monitor trigger, while NMON is the number of events triggered by the monitor trigger alone.
Here, only raw triggers are used, which are defined before any prescaling of the events.
In order to study the efficiency for the azimuthal decorrelation measurement, ǫTrigger is
calculated after the DIS and dijet selection. The trigger efficiency for the (S0||S61) trigger
is shown as a function of ∆φ∗ in bins of xBj in Figure 4.20 and in bins of Q2 in Figure 4.21.
As can be seen, the efficiency is close to 1 for both data and the Monte Carlo simulations
in all analysis bins, although the efficiency of the triggers seem to be slightly overestimated
in the simulation. Nevertheless, the differences are small, and no correction factors need
to be applied for the trigger efficiency.

4.4 Systematic Errors

In this section, the contributions to the systematic errors are discussed. Table 4.2 and 4.3
summarize the contributions and the typical uncertainties in the inclusive and the ∆φ∗

dijet decorrelation cross sections, respectively.

Electron Calibration

One contribution to the systematic error is the uncertainty of the SPACAL energy cali-
bration. An uncertainty of the SPACAL energy scale leads to a systematic error of the
measured energy of the scattered electron, which in turn leads to uncertainties in the values
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Figure 4.21: Trigger efficiencies for the (S0||S61) trigger as a function of ∆φ∗ in bins of
Q2. Data are compared to the predictions of Rapgap and Django(CDM).
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of the kinematic variables Q2, xBj and y, see (3.2). This results in an uncertainty of the
four-vector of the exchanged photon and, as a consequence, to an uncertainty of the boost
to the HCM frame.

The SPACAL calibration can be studied by comparing the energy of the scattered
electron as measured by the SPACAL (E

′

e) with that measured using the double angle
method (E

′

DA) [115]. E
′

DA is calculated using the polar angles of the electron (θe) and the
combined four-vector of all other final state particles (γH) according to

E
′

DA =
2Ee · sinγH

sinγH + sinθe − sin(γH + θe)

where Ee = 27.6 GeV is the energy of the incoming electron,

γH = 2 · atan

(∑

i E −
∑

i Pz
∑

i PT

)

and the sums run over all final state particles except the scattered electron. The double
angle is (to lowest order) independent of the energy measured by the SPACAL and may
serve as a reference. The distribution of the E

′

e/E
′

DA ratio is shown in Figures 4.22 and 4.23
for data, Rapgap and Django(CDM) in bins of Q2 and E

′

e, respectively. As can be
seen, the ratio is shifted towards values below unity and the largest shift is seen for low Q2.
However, this behaviour is well understood as can be seen by the good description of the
data by the MC simulations. This is also shown in Figure 4.24, where the ratio of the mean
values for data and MC, < E

′

e/E
′

DA >DATA / < E
′

e/E
′

DA >MC , is shown as a function of
Q2 and E

′

e. This confirms that the uncertainty of the energy scale of the SPACAL is ±1%
[126,127].

Hadronic Calibration

The calibration of the LAr calorimeter can be studied using the ratio of the transverse
momentum of the HFS (PT,HFS) and the transverse momentum of the scattered electron
(PT,e). The HFS is calculated as the sum of the four-momenta of all final state particles,
except the scattered electron. In Figures 4.25 and 4.26, the ratio PT,HFS/PT,e is plotted
in bins of η and E∗

T of the hardest jet (the jet with the largest transverse momentum in
the HCM frame) for data, Rapgap and Django(CDM). Since the scattered electron
and the HFS should balance due to momentum conservation, the ratio PT,HFS/PT,e should
peak at 1. Again, the shift and the width are well described by the MC simulations,
indicating that the hadronic energy scale is well calibrated. In Figure 4.27, the double ratio
< PT,HFS/PT,e >DATA / < PT,HFS/PT,e >MC is shown as a function of E∗

T and η of the
hardest jet. As can be seen, the variation stays within 4% which is taken as the systematic
uncertainty of the hadronic energy scale.

Electron Polar Angle

As described in Section 2.2.1, the polar angle of the scattered electron is measured using
the BDC with a precision of ±1 mrad. The uncertainty in the cross sections due to this is
relatively small.

Model Dependence

Another source of systematic uncertainties comes from the determination of the cross
sections using different Monte Carlo generators. In this analysis, the final cross section
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is taken as the average of the cross sections obtained by Rapgap and Django(CDM),
while half of the difference between these has been added as a systematic error.

Unfolding Bias

The unfolding bias is estimated by unfolding Rapgap using Django(CDM) and then
comparing the unfolded distribution to the generated hadron level distribution of Rap-
gap (and vice versa), as explained in Section 4.2. The mean deviation from the correct
distribution in each bin is taken as a systematic uncertainty.

Photoproduction Background

Although specific cuts were made to remove photoproduction events from the sample used
in this analysis (see Chapter 3), there might still remain some photoproduction events.
This has been investigated using the MC generator Phojet. The contribution to the
systematic error from photoproduction background is negligible.

Track Momentum

The uncertainty in the determination of the momentum of a track gives an additional
uncertainty in the construction of the combined objects. To investigate the systematic
error in the cross sections due to this mismeasurement, the track momentum has been
varied by ± 3%. This gives a negligible contribution to the systematic uncertainty.

Luminosity

The luminosity is determined to a precision of ± 1.5%, which is taken as an overall sys-
tematic uncertainty.

Source Uncertainty Typical ∆σ
dσ

dxbj

dσ
dQ2

SPACAL electromagnetic energy scale ± 1% 0.5-2% 0.5-2%
Polar angle of scattered electron ± 1 mrad <1% <1%
LAr hadronic energy scale ± 4% 2-5% 2-5%
Track momentum ± 3% ≪ 1% ≪ 1%

Model uncertainty
|CRapgap−CDjango|

2
1-3% 1-5%

Photoproduction background ≪ 1% ≪ 1%
Luminosity 1.5% 1.5%

Table 4.2: Summary of systematic errors and their sources for the inclusive dijet cross
sections.

4.5 Results

As previously explained, the aim of this analysis is to measure the azimuthal correlations
in dijet events, since the ∆φ∗ separation between the two jets is directly related to the
transverse momentum kT of the interacting parton. The ∆φ∗ distributions should thus
be sensitive to different parton dynamics in the initial state cascade and also to different
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Source Uncertainty Typical ∆σ
d2σ

dxbjd∆φ∗

d2σ
dQ2d∆φ∗

d3σ
dxbjdQ2d∆φ∗

SPACAL electromagnetic energy scale ± 1% 0.5-2% 0.5-2% 1-3%
Polar angle of scattered electron ± 1 mrad <1% <1% 0.5-2%
LAr hadronic energy scale ± 4% 2-7% 2-7% 2-10%
Track momentum ± 3% ≪ 1% ≪ 1% ≪ 1%

Model uncertainty
|CRapgap−CDjango|

2
0.5-2% 0.5-2% 1-4%

Unfolding bias
∆σRapgap+∆σDjango

2
1-4% 1-4% 1-7%

Photoproduction background ≪ 1% ≪ 1% ≪ 1%
Luminosity 1.5% 1.5% 1.5%

Table 4.3: Summary of systematic errors and their sources for the ∆φ∗ correlation cross
sections.

parameterizations of unintegrated gluon densities in models using kT -factorization. First,
however, the inclusive dijet cross sections as a function of xBj and Q2 are presented.

Inclusive Dijet Cross Sections

The inclusive dijet cross sections as a function of xBj are presented in Figure 4.28 and 4.29.
Below the cross section plots, the ratio of the theoretical predictions and the measured data
are also shown. Statistical uncertainties correspond to the inner error bars, while the outer
error bars represent the total uncertainty (statistical and systematic uncertainties added in
quadrature). In Figure 4.28, the measured data are compared to the predictions of Cas-
cade using two different unintegrated gluon density functions (uGDFs), J2003 set2 and
A0 (see Section 1.8). Using the A0 uGDF, Cascade describes the cross section at small
x reasonably well, while it undershoots the data in this region with J2003 set2. However,
the cross section predicted by Cascade increases with increasing xBj compared to the
measured data, and at large xBj , both predictions overshoot the data by approximately
the same amount. Figure 4.29 compares the same data to cross sections obtained using
Rapgap and Lepto(CDM)1. If only using the direct component, Rapgap predicts too
low a cross section for all xBj bins except the highest one. By adding the resolved photon
component, the cross section increases more at small xBj than at large xBj , giving a total
cross section which is about 5-10% above the data at all xBj . The shape of the cross
section predicted by Lepto(CDM) resembles the one obtained by Cascade(A0), with
the difference that Lepto(CDM) is much closer to the data at large xBj and overshoots
with about 10% at small xBj .

Figure 4.30 and 4.31 show the inclusive dijet cross section as a function of Q2 com-
pared to the predictions of Cascade, Rapgap and Lepto(CDM). Since xBj and Q2 are
correlated, the same tendencies are seen here as in Figure 4.28 and 4.29. Worth noting
is that Lepto(CDM) describes the data almost perfectly between 5 < Q2 < 10 GeV2,
and also Rapgap DIR+RES does a better job at low Q2 than at low xBj . A comparison
to fixed order QCD calculations is not meaningful since the NLO 2-jet calculations suffer
from incomplete cancellations between real and virtual corrections, while the NLO 3-jet
calculations diverge when only demanding two jets, as explained in Section 1.9. However,

1The data are presented on the non-radiative hadron level. Therefore, Lepto(CDM), which does not
include QED corrections, is used for comparisons instead of Django(CDM).
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Figure 4.28: Inclusive dijet cross sections as a function of xBj compared to the predictions
of Cascade using two different uGDFs.

the problematic region is when the two jets are back-to-back, making comparisons to NLO
calculations possible if ∆φ∗ < 180◦.

Double Differential Dijet Cross Sections

Figure 4.32 gives the dijet cross section as a function of the azimuthal angle ∆φ∗ in bins
of xBj compared to NLO 2-jet and NLO 3-jet calculations. The renormalisation scale µr

and factorisation scale µf are in these calculations chosen as the average transverse energy

of the two jets, µr = µf =
(

E∗

T1
+E∗

T2

2

)

. The scale uncertainties, indicated with error bands

around the central values, are estimated by varying µr and µf simultaneously a factor 2 up
and 1/2 down. Corrections for hadronisation effects are made bin-by-bin using Cascade
with the KMR [128] and A0 uGDFs for the 2-jet and 3-jet case, respectively. The KMR
gluon density is evolved using only one gluon emission, and the generated events should
therefore, on the parton level, be more similar to the NLO 2-jet calculations. For the NLO
calculations, the PDF CTEQ6M [86] is used. In the back-to-back bins (170 < ∆φ∗ < 180◦)
the predictions of the NLO calculations become meaningless due to infrared sensitivity. The
remaining phase space is not covered by LO 2-jet calculations, since the non back-to-back
topology requires at least one additional emission, and therefore the NLO 2-jet calculation
effectively becomes a LO prediction for the ∆φ∗ observable. As seen from Figure 4.32 such
a description is not sufficient to reproduce the data. The NLO 3-jet calculation, effectively
being an NLO prediction, is closer to the data, but is systematically low for ∆φ∗ < 150◦.
However, the scale uncertainties are large, typically 20 - 50%, and cover the data in most
bins. When normalising the distributions to the cross section between 0 < ∆φ∗ < 170◦

in each xBj bin, as has been done in Figure 4.33, there is partial cancellation of the scale
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Figure 4.29: Inclusive dijet cross sections as a function of xBj . Data are compared to
Rapgap DIR (dotted line), Rapgap DIR+RES (dashed line) and Lepto(CDM) (full
line).
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Figure 4.30: Inclusive dijet cross sections as a function of Q2 compared to the predictions
of Cascade using two different uGDFs.

uncertainties for the NLO calculations. As can be seen, the data are no longer within
the scale uncertainties of the NLO 3-jet calculation. Figure 4.34 shows the same data
as Figure 4.32 but compared to the predictions of Cascade using the A0 and J2003 set2
uGDFs. Whereas Cascade (J2003 set2) describes the data fairly well in all but the lowest
xBj bin, Cascade (A0) fails to describe the data in all bins, predicting too many jets with
small ∆φ∗. This clearly shows the sensitivity of ∆φ∗ to the unintegrated gluon density,
indicating that the kT -spectrum of the A0 uGDF is too hard, i.e. it has too many gluons
with large kT .

In Figure 4.35, data are compared to the predictions of Rapgap DIR, Rapgap DIR+RES
and Lepto(CDM). Rapgap DIR predicts about the right amount of back-to-back jets
but produces too few dijets with smaller ∆φ∗. The situation at small ∆φ∗ is somewhat
improved by adding the resolved photon component, but this on the other hand also adds
too many back-to-back jets. Also Lepto(CDM) predicts too many back-to-back jets, but
in contrast to Rapgap DIR+RES, Lepto(CDM) is closer to data at low xBj than at
high xBj .

The ∆φ∗ correlations have also been measured in bins of Q2, shown in Figures 4.36 -
4.39. In Figure 4.36 we see again that NLO 2-jet (α2

s) calculations fail to describe the data,
whereas NLO 3-jet (α3

s) calculations improve the situation but are still systematically low
for ∆φ∗ < 150◦. The data are, however, described within the large scale uncertainties.
Normalising the data to the visible cross section between 0 < ∆φ∗ < 170◦ in each Q2 bin,
shown in Figure 4.37, there is again partial cancellation of the scale uncertainties such that
the data are no longer described by the NLO calculations. Figure 4.38 shows the same
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Figure 4.31: Inclusive dijet cross sections as a function of Q2. Data are compared to
Rapgap DIR (dotted line), Rapgap DIR+RES (dashed line) and Lepto(CDM) (full
line).
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Figure 4.32: Dijet cross sections as a function of ∆φ∗ in bins of xBj. Data are compared
to NLO 3-jet (full line) and NLO 2-jet (dashed line) calculations obtained from the Nlo-
Jet++ program. The error bands represent the scale uncertainties as described in the
text.
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Figure 4.33: Dijet cross sections as a function of ∆φ∗ in bins of xBj normalised to the
visible cross section between 0 < ∆φ∗ < 170◦ in each xBj bin. Data are compared to NLO
3-jet (full line) and NLO 2-jet (dashed line) calculations obtained from the NloJet++
program. The error bands represent the scale uncertainties as described in the text.
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Figure 4.34: Dijet cross sections as a function of ∆φ∗ in bins of xBj compared to the
predictions of Cascade using two different uGDFs.
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Figure 4.35: Dijet cross sections as a function of ∆φ∗ in bins of xBj . Data are compared to
Rapgap DIR (dotted line), Rapgap DIR+RES (dashed line) and Lepto(CDM) (full
line).
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data as Figure 4.36 compared to Cascade. Using the uGDF J2003 set2, Cascade is
able to describe the data reasonably well, except in the lowest and highest Q2 bins, while
Cascade(A0) fails in all bins. Comparisons to Rapgap DIR, Rapgap DIR+RES and
Lepto(CDM) are shown in Figure 4.39. Again, all models fail to describe the shape of
the data, predicting too few dijets with small azimuthal separations and, in the case of
Rapgap DIR+RES and Lepto(CDM), too many back-to-back jets.

Triple Differential Dijet Cross Sections

The ∆φ∗ correlations and the ratios between the theoretical predictions and the data
are also presented triple differentially in bins of xBj and Q2, as shown in Figures 4.40 -
4.47. The same tendencies are seen as in the previous figures: the NLO calculations are
systematically low for ∆φ∗ < 150◦, as are Rapgap and Lepto(CDM), while Cascade
with the A0 uGDF again overshoots the data for small ∆φ∗. The best description is
found with Cascade J2003 set2, which describes the data well in most bins, although it
overshoots the data in the largest xBj and Q2 bin and undershoots it in the smallest xBj

and Q2 bins.

In order to compare the decorrelation in different kinematic regions, the measured
d2σ

dxBjd∆φ∗ data are shown in Figure 4.48 for all three xBj bins normalised to the cross

section in each respective back-to-back bin. In addition, the ratio of each cross section and
the cross section in the lowest xBj bin is shown. It is clearly seen that the decorrelation
increases as xBj decreases, in agreement with the expectation that lower xBj implies more
radiation and hence less back-to-back jets. The same tendency is also seen in the theoretical
predictions (not shown).
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Figure 4.36: Dijet cross sections as a function of ∆φ∗ in bins of Q2. Data are compared
to NLO 3-jet (full line) and NLO 2-jet (dashed line) calculations obtained from the Nlo-
Jet++ program. The error bands represent the scale uncertainties as described in the
text.
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Figure 4.37: Dijet cross sections as a function of ∆φ∗ in bins of Q2 normalised to the
visible cross section between 0 < ∆φ∗ < 170◦ in each Q2 bin. Data are compared to NLO
3-jet (full line) and NLO 2-jet (dashed line) calculations obtained from the NloJet++
program. The error bands represent the scale uncertainties as described in the text.
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Figure 4.38: Dijet cross sections as a function of ∆φ∗ in bins of Q2 compared to the
predictions of Cascade using two different uGDFs.



4.5. RESULTS 101

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-410

-310

-210 2 < 10 GeV2  5 < Q
Data
Rapgap Dir

Rapgap Dir + Res

Lepto (CDM)

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-410

-310

-210

0

1

2

* (deg.)φ∆
0 20 40 60 80 100 120 140 160 180

M
C

/D
at

a 
   

 

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d -510

-410

-310

2 < 15 GeV210 < Q

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d -510

-410

-310

0

1

2

* (deg.)φ∆
0 20 40 60 80 100 120 140 160 180

M
C

/D
at

a 
   

 

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-510

-410

-310

2 < 20 GeV215 < Q

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-510

-410

-310

0

1

2

* (deg.)φ∆
0 20 40 60 80 100 120 140 160 180

M
C

/D
at

a 
   

 

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-510

-410

-310

2 < 30 GeV220 < Q
/d

eg
.)

2
*(

n
b

/G
eV

φ∆d2
/d

Q
σ2 d

-510

-410

-310

0

1

2

* (deg.)φ∆
0 20 40 60 80 100 120 140 160 180

M
C

/D
at

a 
   

 

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-510

-410

-310 2 < 50 GeV230 < Q

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-510

-410

-310

0

1

2

* (deg.)φ∆
0 20 40 60 80 100 120 140 160 180

M
C

/D
at

a 
   

 

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-610

-510

-410

2 < 100 GeV250 < Q

/d
eg

.)
2

*(
n

b
/G

eV
φ∆d2

/d
Q

σ2 d

-610

-510

-410

0

1

2

* (deg.)φ∆
0 20 40 60 80 100 120 140 160 180

M
C

/D
at

a 
   

 

Figure 4.39: Dijet cross sections as a function of ∆φ∗ in bins of Q2. Data are compared to
Rapgap DIR (dotted line), Rapgap DIR+RES (dashed line) and Lepto(CDM) (full
line).
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Figure 4.40: Dijet cross sections as a function of ∆φ∗ in bins of xBj and Q2. Data are
compared to NLO 3-jet (full line) and NLO 2-jet (dashed line) calculations obtained from
the NloJet++ program. The error bands represent the scale uncertainties as described
in the text.
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Figure 4.41: Ratio of the theoretical predictions and the measured dijet cross sections as a
function of ∆φ∗ in bins of xBj and Q2. NLO 3-jet (full line) and NLO 2-jet (dashed line)
calculations were obtained from the NloJet++ program. The error bands represent the
scale uncertainties as described in the text.
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Figure 4.42: Dijet cross sections as a function of ∆φ∗ in bins of xBj and Q2 normalised
to the visible cross section between 0 < ∆φ∗ < 170◦ in each xBj and Q2 bin. Data are
compared to NLO 3-jet (full line) and NLO 2-jet (dashed line) calculations obtained from
the NloJet++ program. The error bands represent the scale uncertainties as described
in the text.
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Figure 4.43: Ratio of the theoretical predictions and the measured dijet cross sections as
a function of ∆φ∗ in bins of xBj and Q2 normalised to the visible cross section between
0 < ∆φ∗ < 170◦ in each xBj and Q2 bin. The NLO 3-jet (full line) and NLO 2-jet (dashed
line) calculations were obtained from the NloJet++ program. The error bands represent
the scale uncertainties as described in the text.
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Figure 4.44: Dijet cross sections as a function of ∆φ∗ in bins of xBj and Q2 compared to
the predictions of Cascade using two different uGDFs.
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Figure 4.45: Ratio of the theoretical predictions and the measured dijet cross sections as a
function of ∆φ∗ in bins of xBj and Q2. Data are compared to the predictions of Cascade
using two different uGDFs.
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Figure 4.46: Dijet cross sections as a function of ∆φ∗ in bins of xBj and Q2. Data
are compared to Rapgap DIR (dotted line), Rapgap DIR+RES (dashed line) and
Lepto(CDM) (full line).
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4.6 Comparison with Published Data

The double differential dijet cross section as a function of xBj in bins of Q2 was measured
in an earlier analysis [12], using 1996-97 data comprising a luminosity of L = 21 pb−1. As
a cross check, the analysis presented in this thesis was rerun using the same selection as
in [12]:

E∗
Tj1 > 7 GeV

E∗
Tj2 > 5 GeV

−1 < η1,2 < 2.5

(4.8)

where jet 1 and 2 are the two hardest jets. In order to compare the two measurements, the
1999-2000 data had to be corrected for the difference in proton beam energies (Ep = 820
GeV in 1996-97 and Ep = 920 GeV in 1999-2000). The correction factor is defined as the
ratio of the dijet cross sections generated with the two different beam energies, and was
obtained using Django(CDM). The low-x bins has the largest correction factors, typically
20−40%. The final result for the double differential dijet cross section d2σ

dQ2dxBj
corrected for

detector effects, QED radiation and the difference in proton beam energies is presented in
Figure 4.49, compared to the published result [12]. For the 1999-2000 data, only statistical
uncertainties are shown, whereas the total (statistic and systematic uncertainties added in
quadrature) is shown for the 1996-97 data. As can be seen, all data points agree within
the uncertainties.

In the same publication a measurement of the fraction of dijet events with ∆φ∗ < 120◦,
i.e.

S =

∫ 120◦

0
Ndijet(∆φ∗, x, Q2)d∆φ∗

∫ 180◦

0
Ndijet(∆φ∗, x, Q2)d∆φ∗

,

was performed. The present results in this so-called S-distribution, first proposed in [129],
are shown in Figure 4.50 as a function of xBj in bins of Q2 and compared to the published
data. Again, the 1999-2000 data have been corrected for detector effects, QED radiation
and the difference in proton beam energies. Also in this case, there is agreement within
the experimental uncertainties. These results altogether give confidence in the present
analysis.

The reason for measuring the S-distribution instead of dσ/d∆φ∗ was the large migra-
tions in ∆φ∗ due to the mismatching of jets on the detector and the hadron level. This
in turn depends largely on migrations in and out of the E∗

T cut on the jets. However,
with the HADROO2 algorithm the track information is more often used compared to the
cluster information when determining the four-vectors of the combined objects as was the
case in the previously used FSCOMB algorithm (see Section 2.3). This results in better
jet resolutions for HADROO2 as can be seen in Figure 4.51. The resolutions are shown
in the same jet observables as was presented in Figure 3.7. Compared are detector simu-
lated Monte Carlo events reconstructed with HADROO2 and FSCOMB, respectively. In
the forward direction, the resolution is not improved because of the low track efficiency
in the FTD. In fact, the shift is larger when using HADROO2 compared to FSCOMB,
indicating the need for a better hadronic energy calibration. Nevertheless, the improved
resolution leads to fewer migrations in ∆φ∗, as can be seen in Figure 4.52 and 4.53 where
purity and stability are shown for detector simulated Monte Carlo events, reconstructed
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Figure 4.49: The double differential dijet cross section from the present analysis compared
to previously published data [12]. The error bars on the 96/97 data are total (statistical and
systematic errors added in quadrature) while the error bars on the 99/00 data are statistical
errors only. The 99/00 data have been corrected for the difference in the proton energies
between the run-periods. To improve readability the points are shifted in xBj.
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Figure 4.50: The S-distribution as measured in the present analysis compared to previously
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Figure 4.51: Resolutions in E∗
T , η∗ and φ∗ for the selected jets in bins of η using the

HADROO2 (full line) and FSCOMB (dashed line) algorithms, respectively.

with HADROO2 and FSCOMB, respectively. Also, sorting the jets in η as done in this
analysis, instead of E∗

T leads to larger purities, due to less misidentification of the dijet
system on the detector level (the η resolution is much better than the resolution in E∗

T , as
seen in Figure 3.7 and 4.51).
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Figure 4.52: Purity (P) as a function of ∆φ∗ in bins of xBj for detector simulated Monte
Carlo events reconstructed with the HADROO2 (full line) and FSCOMB (dashed line)
algorithms when ordering the jets in η, and with the FSCOMB algorithm when ordering
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Figure 4.53: Stability (S) as a function of ∆φ∗ in bins of xBj for detector simulated Monte
Carlo events reconstructed with the HADROO2 (full line) and FSCOMB (dashed line)
algorithms when ordering the jets in η, and with the FSCOMB algorithm when ordering
the jets in E∗

T (dotted line).



Chapter 5

A Determination of the Unintegrated

Gluon Density

In the case of kT -factorization, the cross section of an ep collision can be written as a
convolution of a partonic cross section σ̂ and an unintegrated parton density function
(uPDF). In the CCFM approach, the uPDF, A, depends on x, kT and q̄ such that the
cross section can be factorized according to

σ =

∫

dx

x
dk2

T σ̂A(x, kT , q̄). (5.1)

While the partonic cross section is perturbatively calculable, the uPDF describes soft and
hard multiparton radiation and is not calculable in perturbative QCD, but needs to be
determined experimentally at some starting scale q̄0. As soon as this starting distribu-
tion A0(x, kT , q̄0) is known, the uPDF can be evolved to any other scale using the CCFM
equation (1.17). The evolution is driven by perturbatively calculable gluon emissions de-
termined by pQCD. In order to avoid the non-perturbative region a kT cut-off against soft
emissions is applied and below this cut-off the value of αs is kept fixed, whereas otherwise
the scale dependence of αs is considered.

There are some uPDFs available on the market, e.g. [67,70,71,128,130–133]. However,
they are all poorly constrained by experimental data. When studying ep-collisions, a
natural starting point is to fit the unintegrated gluon density to describe the inclusive
structure function F2 [70,71]. However, different uPDFs can give very different predictions
for more exclusive observables, while describing F2 equally well. A clear example of this is
given in Chapter 4 where the predictions of Cascade are very dependent on the uPDF used
(J2003 set2 or A0). This reflects the fact that the transverse momenta of the gluons are
not constrained well enough by F2. Thus, the fitted unintegrated gluon distributions can
have very different kT dependence and still describe the F2 distribution. The insufficient
constraint from F2 alone becomes especially clear when exclusive observables dependent
on kT are studied, for example the azimuthal correlation of dijets. Recently, fits of the
unintegrated gluon density to the more exclusive observable F c

2 and various dijet cross
sections have been performed [134, 135] in order to better constrain the uPDF. In the
present analysis the starting distribution A0(x, kT , q̄0) has been determined from fits to
the dijet cross sections presented in Chapter 4, and to the dijet cross section from [12].
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These cross sections have been chosen because of their sensitivity to the kT and x of the
gluon, respectively. For the first time, the mean and width of the Gaussian intrinsic kT

distribution are included as free parameters in the fit.

It should be mentioned that PDFs are not observables and thus depend on the evolution
scheme used. In this fit the CCFM formalism was used, and hence the uPDF obtained is
only valid in this scheme.

5.1 Sensitivity to the Unintegrated Gluon Density

As already mentioned, the azimuthal correlations are sensitive to the transverse momenta
of the gluons and thus also to different uPDFs. The sensitivity can be shown more ex-
plicitly by studying the xg and kT,g distributions in the same xBj and ∆φ∗ bins as in the
measurement (see Chapter 4). Cascade has been used with the J2003 set2 uPDF to gen-
erate xg and kT,g distributions on the parton level and the results are shown in Figures 5.1
and 5.2. First it can be noted that on the average xg is larger for larger xBj , which is not
surprising since they are related in LO by

xg = xBj

(

1 +
M2

ij

Q2

)

(5.2)

where Mij is the invariant mass of the dijet system. Also, comparing the large and small
∆φ∗ bin with the middle ones, one can see a tendency for xg to reach a minimum for
80 < ∆φ∗ < 120◦. In the bin 170 < ∆φ∗ < 180◦ the jets are (almost) back-to-back
and the most likely scenario is to have two hard jets and some additional soft radiation.
As ∆φ∗ decreases, the jets get more decorrelated meaning that more soft (or less but
harder) radiation is required to balance the two jets. Since energy and momentum are
conserved, this leaves on the average less longitudinal momentum accessible for the dijet
system, compared to the back-to-back scenario. However, as ∆φ∗ becomes even smaller,
the average xg increases again. This is due to the fact that, when ∆φ∗ is forced to be small,
∆η∗ can no longer be arbitrarily small since the invariant mass

Mij = 2PT,1PT,2(cosh(∆η∗) + cos(∆φ∗)) (5.3)

must be positive. The correlation between ∆φ∗ and ∆η∗ is shown in Figure 5.3. Mij

depends strongly on ∆η∗ through the cosh(∆η∗) dependence but only weakly on ∆φ∗,
so by forcing ∆η∗ to be large, Mij and hence also xg will be large. Nevertheless, the xg

dependence on ∆φ∗ is relatively small, as seen from Figure 5.1.

In Figure 5.2 the kT,g distributions in each xBj and ∆φ∗ bin is shown. For fixed ∆φ∗,
the mean value of kT,g decreases with increasing xBj . This is in agreement with the fact
that at small xBj more additional radiation has been emitted in the gluon ladder, which
also increases the kT,g and leads to larger decorrelations of the dijet system, see Figure 4.48.
For large ∆φ∗ where the dijets are almost back-to-back, kT,g peaks at small values (around
1 GeV) which is consistent with the limited phase space for additional radiation from such
event topologies. However, the distributions have tails up to larger values which originate
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Figure 5.1: The distribution of xg as generated by Cascade on the parton level using the
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Figure 5.2: The distribution of kT,g as generated by Cascade on the parton level using the
J2003 set2 uPDF, in different bins of xBj and ∆φ∗. The mean value of kT,g in each bin is
given.
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Figure 5.3: The correlation between ∆φ∗ and ∆η∗ on the hadron level as generated by
Django(CDM).

from events with very high PT jets, where even at large ∆φ∗, kT,g can reach high values,
as can be realized from

k2
T,g = P 2

T,1 + P 2
T,2 + 2PT,1PT,2cos(∆φ∗).

For smaller values of ∆φ∗, the transverse momentum kT,g increases significantly, as ex-
pected.

In an attempt to better constrain the xg dependence, the triple differential dijet cross

sections d3σ
dxBjdQ2dE∗

T,Max

from [12] are also included in the fit of the unintegrated gluon

density. Here, E∗
T,Max is the transverse momentum of the hardest jet in the HCM frame.

The DIS and dijet cuts of the analysis are explained in Chapter 4. In Figure 5.4, the
xg distribution in the lowest Q2 bin, 5 < Q2 < 10 GeV2, is shown for different xBj and
E∗

T,Max bins. As can be observed, xg is fairly well constrained by the dijet measurement
and is highly sensitive to E∗

T,Max. This is due to the fact that E∗
T,Max is directly related to

the invariant mass Mij of the dijet system according to Equations (5.2) and (5.3). From
Figure 5.5 it is obvious that kT,g is less well constrained by this measurement.

5.2 Fit Procedure

The fit of the unintegrated gluon density to the data discussed in this analysis is performed
using the Cascade Monte Carlo generator together with HzTool [136] and the downhill
simplex method [137] as implemented in the Minuit [138] package. The simplex method is
used because it only relies on the calculation of function values and is therefore less sensitive
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to statistical fluctuations than methods using derivatives. The starting distribution is
parameterized as

xA0(x, kT , q̄0) = N · x−B · (1 − x)4 · exp

(

−(kT − µ)2

2σ2

)

(5.4)

where N , B, µ and σ are free parameters, and the starting scale is chosen as q̄0 = 1.2 GeV.
N is an overall normalisation factor, B determines the small-x behaviour while µ and
σ are the mean value and the width (standard deviation) of the Gaussian intrinsic kT

distribution, respectively. The factor (1 − x)4 mostly affects the large-x region and only
shows a small sensitivity to the cross sections. The exponent is therefore kept fixed at 4,
which is the same as in earlier fits to F2 and F c

2 [70, 71, 134]. A set of starting parameters
is chosen for xA0(x, kT , q̄0), which is used as input to Cascade. With this parameter
setting Cascade generates full DIS events on the hadron level by convoluting the starting
distribution A0 with the CCFM evolution kernel Ã,

xA(x, kT , q̄) =

∫

dx′A0(x, kT , q̄0) ·
x

x′
Ã(

x

x′
, kT , q̄).

Ã contains the splitting function which, in this analysis, includes both the singular and
non-singular terms (for details, see [71, 72]). The generated events are fed through the
analysis code where dijet events are selected according to the cuts in Chapters 3 and 4,
and predictions on the hadron level for d3σ

dxBjdQ2d∆φ∗ and d3σ
dxBjdQ2dE∗

T,Max

are obtained. Using

the HzTool package, the predictions are then compared to the measured data, and a χ2

is calculated according to

χ2 =

n
∑

i=1

(σi,MC − σi,Data)
2

δ2
i,MC + δ2

i,Data

(5.5)

where σi,MC , σi,Data, δi,MC and δi,Data are the theoretical predictions and the measured
cross sections with the corresponding uncertainties for bin i. Here, δi,Data is the total
error (statistical and systematic errors added in quadrature), while δi,MC only contains the
statistical error from the MC event generation. The sum runs over all bins i = 1, 2, . . . , N .
A new parameter setting for the starting distribution is then chosen according to the rules
of the downhill simplex method (see Appendix C) and the procedure is iterated until a
minimum is found.

5.3 Results

Before performing a simultaneous fit of the triple differential ∆φ∗ correlation data presented
in Chapter 4, d3σ

dxBjdQ2d∆φ∗ , and the triple differential dijet cross sections d3σ
dxBjdQ2dE∗

T,Max

from [12], the unintegrated gluon density is first fitted to each sample separately. Apart
from studying the sensitivities to different values of µ and σ, it is also interesting to
investigate the sensitivities to the parameter B, since in a recent study [134], the value
B = 0.0278 was obtained from a fit to F2 while a fit to F c

2 gave B = 0.2860. The B
parameter determines the slope of the starting uPDF as a function of x (see Eqution 5.4),
where a larger value gives a steeper rise toward small x. The parameters of the Gaussian
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χ2/ndf χ2 ndf N B σ (GeV) µ (GeV)

d3σ

dxBjdQ2d∆φ∗

3.0 186 61 0.25 0.29 1.1 1.5
5.3 325 61 0.47 0.04 1.1 1.5
6.9 421 61 0.20 0.29 0.7 0.0

10.0 613 61 0.47 0.04 0.7 0.0

d3σ

dxBjdQ2dE∗
T,Max

1.6 53 34 0.25 0.29 1.1 1.5
1.3 44 34 0.47 0.04 1.1 1.5
2.2 75 34 0.19 0.30 0.7 0.0
2.1 71 34 0.47 0.04 0.7 0.0

Combined Fit
2.5 245 99 0.25 0.29 1.1 1.5
4.4 440 99 0.47 0.03 1.1 1.5

Table 5.1: The obtained χ2 and χ2/ndf, where ndf is the number of degrees of freedom,
found for different parameter settings, when fitting the two data sets separately and when
fitting to both sets simultaneously (Combined Fit).

kT distribution were not included in the fit of [134], but set to µ = 0 GeV and σ = 0.7
GeV. It is therefore natural to use these parameter values of B, µ and σ as starting values
in the fit procedure. However, the effects of larger values of µ and σ are also investigated
here. As seen in Table 5.1, the triple differential azimuthal correlation data clearly prefer
a large value of B, and also larger values of µ and σ than previously used. However, the
χ2/ndf is still large for the best fit, which is mainly due to the largest xBj and Q2 bin

contributing χ2 = 89. Also the d3σ
dxBjdQ2dE∗

T,Max

data prefer larger values of µ and σ but not

as significantly. In contrast to the azimuthal correlation cross sections, these data seem to
prefer a less steep gluon density. However, also B = 0.29, in combination with σ = 1.1 and
µ = 1.5, gives a reasonable description of the data, as seen in Table 5.1.

The simultaneous fit to the two data sets yields an unintegrated gluon density with the
parameters N = 0.252, B = 0.292, σ = 1.06 GeV and µ = 1.50 GeV, giving a χ2/ndf= 2.5.
The uPDF with this parameter setting will in the following be called uPDF1. The combined
fit thus gives a very similar unintegrated gluon density as the fit to the ∆φ∗ correlation
data alone. Apparently, the errors in the d3σ

dxBjdQ2dE∗

T,Max

measurement are not small enough

to have sufficient influence on the fit in order to lower the B value. A local minimum
is, however, found with a smaller value of B, but with a significantly larger χ2/ndf, see
Table 5.1.

Figure 5.6 shows the cross section of the measured data and the obtained fit result
(uPDF1), in addition to the predictions of Cascade with A0 and J2003 set2 already
shown in Chapter 4, while Figure 5.7 shows the ratio of the predictions and the data.
As previously noticed, A0 overshoots the data for ∆φ∗ < 150◦ in almost all bins, while
J2003 set2 gives a reasonable description of the data. The largest improvement of uPDF1
compared to J2003 set2 is seen at small xBj where uPDF1 describes all ∆φ∗ bins fairly
well. There is also a slight improvement at medium xBj for the large ∆φ∗ bins, while
both J2003 set2 and uPDF1 give similar results at large xBj . In the largest xBj and Q2

bin, both J2003 set2 and uPDF1 give too large a cross section, especially at large ∆φ∗.
In Figure 5.8 is shown the cross sections measured in [12] compared to the predictions of
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Total χ2 χ2 contributions from
d3σ

dxBjdQ2d∆φ∗

d3σ

dxBjdQ2dE∗
T,Max

uPDF1 245 184 61
J2003 set2 861 762 99
A0 2056 1974 82

Table 5.2: The total χ2 values and the contributions from the separate data sets obtained
using Cascade with uPDF1, J2003 set2 and A0.

Cascade using the same uPDFs as above, and Figure 5.9 shows the ratio of the Cascade
predictions and the data. Here, A0 gives a better description than J2003 set2 at small xBj

while it is worse at large xBj . Although the uPDF1 gives quite a good agreement with data
in the lowest E∗

T,Max bin, the deviation increases with increasing E∗
T,Max. This tendency is

observed in most xBj and Q2 bins. However, the errors on both the data and the generated
distributions are large, such that the data are described within the errors in almost all
E∗

T,Max bins. Even though the χ2/ndf obtained in the combined fit is somewhat large, it is
still an improvement compared to J2003 set2 and A0. This can be seen in Table 5.2, where
the χ2 values obtained from uPDF1, J2003 set2 and A0 are given, also showing the separate
contributions from d3σ

dxBjdQ2d∆φ∗ and d3σ
dxBjdQ2dE∗

T,Max

. In general, the largest contribution to

the χ2 values comes from the ∆φ∗ correlation data. For uPDF1, it is in particular the
largest xBj and Q2 bin which contributes the most (χ2 = 85). If this bin is excluded in the
fit, the same minimum is found but with χ2/ndf= 151/94 = 1.6. Such problems do not
appear if d3σ

dxBjdQ2dE∗

T,Max

is fitted in combination with the double differential cross section

d2σ
dxBj∆φ∗ . Such a fit results in a χ2/ndf= 84/49 = 1.7 with in principle the same parameters

as uPDF1 (N = 0.253, B = 0.293, σ = 1.06 GeV and µ = 1.50 GeV).

In order to study the sensitivity of the fit to the free parameters, a scan around the
minimum is performed for each parameter separately, while all other parameters are kept
fixed at the values obtained in the fit (uPDF1). The result of this scan is shown in
Figure 5.10. The large sensitivity to the parameters N and B is clearly seen, and the χ2

function shows one clear minimum. The parameters µ and σ have less influence on χ2 but
shows a more complex behaviour, with local minima.

Figure 5.11 shows the unintegrated gluon densities uPDF1, A0 and J2003 set2 as a
function of x for two different values of k2

T , and as a function of k2
T for two different values

of x. The factorization scale is q̄ = 4 GeV in all plots. For k2
T = 1 GeV2, both A0 and J2003

set2 are almost flat at low x, while uPDF1 rises as x decreases. The small-x behaviour is
determined by the parameter B, which in the fit is found to be B = 0.292. For A0 and
J2003set2, this parameter was set to B = 0. For k2

T = 10 GeV2, A0 and J2003 set2 still
have very similar shapes. However, A0 is everywhere higher, which is consistent with the
conclusion in Chapter 4 that A0 has a harder kT spectrum. Again, uPDF1 has a steeper
rise at small x given by the higher B value, but in the large-x tail uPDF1 is similar to
J2003 set2.

Looking at the kT dependence of the uPDFs at different values of x, one can see a
separation between the low and high kT region. In the low kT region, k2

T . 1.5 GeV2, the
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Figure 5.6: Dijet cross sections as a function of ∆φ∗ in bins of xBj and Q2 compared to
the predictions of Cascade using the uPDFs A0, J2003 set2 and uPDF1 obtained from
the fit.
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Figure 5.7: Ratio of the theoretical predictions and the measured dijet cross sections as a
function of ∆φ∗ in bins of xBj and Q2. Data are compared to the predictions of Cascade
using the uPDFs A0, J2003 set2 and uPDF1 obtained from the fit.
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Figure 5.9: Ratio of the theoretical predictions and the measured dijet cross sections as a
function of E∗

T,Max in bins of xBj and Q2 from [12]. Data are compared to the predictions
of Cascade using the uPDFs A0, J2003 set2 and uPDF1 obtained from the fit.
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Figure 5.10: The χ2 profile as a function of the various parameters, N , B, σ and µ, in the
fit of the unintegrated gluon density. Plotted on the vertical axis is the difference between
the total χ2 and the minimum χ2 obtained from the fit (uPDF1).
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been used.

shape of the uPDF is determined by the Gaussian intrinsic kT distribution chosen for the
starting density function. The impact of choosing different mean values µ of the Gaussian
intrinsic kT distribution is clearly seen: A0 and J2003 set2 both have µ = 0 GeV (with
σ = 0.94 GeV and 0.83 GeV, respectively), leading to uPDFs that rise toward k2

T = 0 GeV2,
while uPDF1 with µ = 1.5 GeV peaks at k2

T ∼ 1.5 GeV2 and decreases for smaller k2
T . A

similar behaviour is expected in the saturation model (GBW) [132]. In the high kT region,
the uPDF is mostly determined by the perturbative evolution and should be less sensitive
to the non-perturbative input distribution. Indeed, uPDF1, A0 and J2003 set2 are very
similar for large k2

T , although A0 is slightly higher than the others for large k2
T , as expected.



Chapter 6

Summary and Outlook

Summary

In this thesis, a measurement of dijet events in deep inelastic ep-scattering at HERA is
presented. The analysis was performed using data collected by the H1 experiment during
1999-2000 with an integrated luminosity of L = 64.3 pb−1. The DIS events were selected
with 5 < Q2 < 100 GeV2 and 0.1 < y < 0.7, while the jets where required to have a
transverse momentum E∗

T > 5 GeV in the hadronic center-of-mass frame and be within
−1 < η < 2.5 in the lab frame.

Inclusive dijet cross sections are presented as a function of xBj and Q2, and compared to
predictions of QCD models implementing LO matrix elements, parton showers and hadroni-
sation effects. The best agreement is found with Rapgap when incorporating the resolved
photon contribution, while Lepto(CDM) and Cascade, with the A0 unintegrated gluon
density, describe the data at low xBj and low Q2 but overshoot the data for larger values of
xBj and Q2. With the J2003 set2 unintegrated gluon density, the predictions of Cascade
are too low at low xBj and Q2 but are becoming too high at high xBj and Q2.

A measurement of azimuthal correlations of dijets is presented double differentially in
bins of xBj and in bins of Q2, respectively, and triple differentially in bins of xBj and Q2.
The data are compared to fixed order QCD calculations corrected for hadronisation effects,
and to the same QCD models as for the inclusive cross sections. The NLO 2-jet (O(α2

s))
calculations are not able to describe the data, but are consistently too low for ∆φ∗ < 150◦.
The discrepancy is largest for low xBj and/or low Q2. The NLO 3-jet (O(α3

s)) calculations
are also lower than data for ∆φ∗ < 150◦, but due to the large uncertainties connected
to the variation of the renormalization and factorization scales, µr and µf , the NLO 3-jet
calculations are able to describe the data in most bins within the errors. By normalising the
cross sections with the total cross section between 0 < ∆φ∗ < 170◦ in each xBj and Q2 bin,
some of the scale uncertainties are cancelled and the NLO calculations are no longer able
to describe the data. Comparing the data to predictions of Cascade one can clearly see
the sensitivity of the azimuthal correlations to the choice of uPDF. The J2003 set2 uPDF
gives approximately the correct shape but falls somewhat below data at low xBj and low
Q2, whereas it slightly overshoots data in the highest xBj and Q2 bin. In the intermediate
region the description is reasonably good. On the other hand, Cascade with the A0
uPDF predicts a completely different ∆φ∗ dependence where the cross section is much too
high for small ∆φ∗ but approaches data as ∆φ∗ increases. This behaviour is typical for all
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kinematic bins but the absolute magnitude of the cross section increases with increasing
xBj and Q2, compared to data. The colour dipole model in combination with LO matrix
elements, Lepto(CDM), generally predicts less decorrelation of the dijets compared to
data, i.e. too many back-to-back jets and too few dijet events with low ∆φ∗. It is, however,
closer to the data at low xBj and Q2 than at high xBj and Q2. Rapgap DIR is able to
describe the back-to-back bin in almost all xBj and Q2 bins, but undershoots the data for
lower ∆φ∗. Adding the contribution from resolved photons, Rapgap DIR+RES is closer
to the data for low ∆φ∗ compared to Rapgap DIR, but predicts too many back-to-back
jets. In contrast to Lepto(CDM), both Rapgap DIR and Rapgap DIR+RES do a
better job at high xBj and Q2 compared to low xBj and Q2.

The measurement thus shows that neither the direct DGLAP approximation nor models
breaking the transverse momentum ordering in the parton ladder satisfactorily describe
the azimuthal correlations. The best description is found using a model implementing the
CCFM approximation, but this, on the other hand, shows a large sensitivity to the choice
of the unintegrated PDF. Fixed order NLO calculations of O(α2

s) and O(α3
s) are also not

able to fully describe the data, indicating that higher order corrections are important for
this observable. This is in agreement with the measurement of [12], but in contrast to the
recently published measurement of [89], where good agreement with O(α3

s) calculations
was found.

A combined fit of the unintegrated gluon density in the CCFM approach to the triple
differential dijet data d3σ

dxBjdQ2d∆φ∗ presented in this analysis and the triple differential dijet

data d3σ
dxBjdQ2dE∗

T,Max

from [12] has been performed. The dijet correlation cross section is

directly sensitive to the kT,g of the interacting gluon and in a limited range also sensitive
to its longitudinal momentum fraction xg. The dijet data from [12], however, shows a large
sensitivity to xg but a limited sensitivity to kT,g. By combining the two, a better constraint
of the unintegrated gluon density A(x, kT , q̄) is expected. The starting distribution is

parameterized as xA0(x, kT , q̄0) = N · x−B · (1 − x)4 · exp
(

− (kT −µ)2

2σ2

)

, where N , B, µ

and σ are free parameters in the fit. By excluding the highest xBj and Q2 bin in the
azimuthal correlation data, a reasonable fit with χ2/ndf= 150.85/93 = 1.62 is found.
The unintegrated gluon density obtained is very similar to that found when fitting to the
azimuthal correlation data alone, indicating that the data from [12] has a small influence on
the result. The gluon density found in the fit rises more steeply towards low x compared
to A0 and J2003 set2, but is similar to the uPDF found in a previous fit to F c

2 [134].
Also, the data fitted in this analysis prefer a mean µ 6= 0 GeV for the Gaussian intrinsic
kT distribution resulting in a decreasing uPDF as kT → 0. It should be noted that the
kT distribution is assumed to be a Gaussian in the fit, and that this assumption is not
constrained.

Outlook

In a possible continuation of this analysis, an improved hadronic calibration would decrease
the migrations significantly and make possible a finer binning in ∆φ∗. A related variable
to ∆φ∗ which would be interesting to measure, is the vectorial PT sum of the two dijets,
|
∑

j=1,2 P̄T,j|. This variable was measured in [89]. Another variable, proposed in [107], is

f(P 2
T,Max > k · P 2

T,Min) =
σDijet(P

2
T,Max>k·P 2

T,Min)

σDijet
where P 2

T,Max = max(P 2
T,1, P

2
T,2), P 2

T,Min =

min(P 2
T,1, P

2
T,2) and k is a positive number. This variable is a measure of the spread in



135

the P 2
T,1 × P 2

T,2 space, which should differ significantly between DGLAP and non-DGLAP
approximations, and also between different uPDFs. It would also be interesting to extend
the analysis by measuring the azimuthal correlation between the most forward jet and the
scattered electron [88,102,103,106] similar to the analysis in hadron-hadron colliders where
the azimuthal correlation between the two jets most separated in rapidity is measured [90].

Regarding the fit of the unintegrated gluon density, more work is needed to clarify why
different densities are obtained for different data sets. The next steps would also include
fitting the uPDF with uncorrelated and correlated errors separated, so that an uncertainty
in the uPDF can be estimated. There is ongoing work to develop a framework in which a
more precise fit can be performed [139,140]. In such a procedure, errors of the parameters
could be obtained.
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Appendix A

The Toy Model

This appendix describes the toy model used for performing a detailed study of the migra-
tions in the azimuthal correlation measurement (see Section 4.1).

The starting point is to determine the resolutions of the relevant observables (E∗
T , η,

φ, Q2) using detector simulated Monte Carlo events. The resolutions for η, φ and Q2

are obtained inclusively by fitting Gaussian distributions to each resolution plot. The E∗
T

resolutions, however, are determined in six bins of E∗
T,HAD with the lower limit E∗

T,HAD >
3 GeV, by fitting a combination of a Gaussian and two Landau distributions to each
resolution histogram. The results on the mean value, µ, for the Gaussian distribution,
the most probable value, mpv, for each of the Landau distributions and their standard
deviations, σ, are given in Table A.1. The events are then passed through the analysis
code again, and if an event passes the DIS selection on the hadron level, one or more of
the observables E∗

T , η, φ and Q2 will be smeared according to Table A.1. This leads to two
event samples, one of which contains the original set of hadron level observables and the
other a set of smeared observables, constituting a “toy detector level”. The dijet selection
can then be applied to both these levels, and purities and stabilities can be calculated. In
this way, one can study the migrations in detail by “turning on” and “off” the smearing of
the observables in different combinations.

Since all the smearing is applied after the DIS selection, migrations over the DIS cuts
are neglected in this toy model. The smearing of Q2 is only applied to investigate the effect
of migrations between different Q2 bins.
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Bin Landau 1 Gauss Landau 2
mpv σ µ σ mpv σ

(/10−1) (/10−2) (/10−2) (/10−1) (/10−1) (/10−2)

E∗
T

3.0 < E∗
T < 5.0 GeV -2.23 10.8 -10.7 0.87 0.21 5.43

5.0 < E∗
T < 7.5 GeV -4.45 8.49 -7.18 1.45 3.02 5.00

7.5 < E∗
T < 10 GeV -6.07 6.34 -9.14 1.55 3.24 4.65

10 < E∗
T < 12.5 GeV -7.08 4.54 -9.67 1.53 3.13 4.23

12.5 < E∗
T < 20 GeV -7.86 4.52 -9.59 1.41 2.90 3.44

E∗
T > 20 GeV -8.81 3.12 -10.1 1.14 2.27 2.56

η – – – 1.2 0.54 – –
φ – – – -1.7 0.60 – –
Q2 – – – 0.1 0.32 – –

Table A.1: The mean µ (for the Gaussian distributions), the most probable value, mpv,
(for the Landau distributions) and σ used in the toy model.



Appendix B

Definition of Trigger Elements

In this appendix, the definition of each trigger element present in either the physics triggers
(S0, S61) or in the monitor triggers (S39, S64, S66, S67, S77) is given. The triggers are
defined in Table 4.1.

Trigger element Definition

SPCLe IET > 2 An energy deposition with E > 6 GeV in the outer SPACAL region.
SPCLe IET Cen 3 An energy deposition with E > 6 GeV in the inner SPACAL region.
DCRPh THig At least one track candidate in the CJC with a pt > 800 MeV.
zVtx sig A signature for the z-vertex found.
LAr IF Sum over all Big Towers1(BT) lying in the inner forward modules of

the LAr calorimeter (labelled IF2H and IF1E in Figure 2.5) above
threshold.

LAr BR A track is found in the MWPCs (CIP, COP, FPC) pointing to a
Big Tower with an energy deposit exceeding 1 GeV in the LAr
calorimeter.

LAr Etmiss > 1(2) Missing transverse energy ET,miss > 4.5(6) GeV as calculated using
Big Towers.

LAr electron 1 An EM energy deposition above threshold in any LAr BT. The
threshold is 6 GeV in the backward region and increases in the
forward direction due to large beam-induced background.

LAr electron 2 Same as LAr electron 1 but with higher threshold (7.5 GeV in the
backward region).

LAr 2or3 electrons Two or three electrons found in the LAr calorimeter.
FwdRay T0 One or more tracks found in the MWPCs with any topology in the

r − φ plane.

1The LAr is segmented into Big Towers radially outward from the interaction point, as seen in Figure 2.5.
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Appendix C

The Downhill Simplex Method

This appendix summarizes the downhill simplex method. For a more detailed description,
see [1,2].

The downhill simplex method needs N + 1 starting points for the minimization of a
function with N free parameters. In this analysis, four parameters were used, so the first
step in the minimisation procedure is to calculated five function (χ2-) values. If each point
in the four-dimensional parameter space is labelled P , while ei and λi denote the unit
vector and a characteristic length scale of parameter i, and P0 is the original starting point
of the unintegrated gluon density, then the first five points are chosen as P0 and four points
Pi defined by

Pi = P0 + λiei.

Using these points, a geometric figure called a simplex can be constructed by connecting
the points with lines. The simplex then encloses a four-dimensional volume. For example,
with two free parameters, the three starting points can be connected to a triangle which
encloses a two-dimensional surface. The idea of the downhill simplex method is then to
replace the point with the highest χ2 value with a new point, thus forming a new simplex.
The procedure to find a new point relies on three operations: reflection, contraction and
expansion, and is summarised below:

1. Determine which point has the highest (Phi), next-to-highest (Pnhi) and lowest (Plo)
χ2 value. Let yhi, ynhi and ylo denote the function values in these points.

2. Reflect the highest point Phi through the centroid of the simplex and evaluate ynew,1

at the new point Pnew,1.

3. If ynew,1 < ylo then extrapolate Pnew,1 even further away from Phi, to Pnew,2.

(a) If ynew,2 < ylo, then replace Phi with Pnew,2 and start over from 1.

(b) If ynew,2 > ylo, then replace Phi with Pnew,1 and start over from 1.

4. If ynew,1 > ylo, but ynew,1 < ynhi, then replace Phi with Pnew,1 and start over from 1.

5. If ynew,1 > ylo, and ynew,1 > ynhi then

(a) If ynew,1 < yhi then replace Phi with Pnew,1.
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(b) Contract Phi trough the centroid to a new point Pnew,3.

(c) If ynew,3 < yhi then replace Phi with Pnew,3 and start over from 1.

(d) If ynew,3 > yhi then contract all points toward Plo and start over from 1.

Using this algorithm, the simplex “falls” down the slope towards a (local or global)
minimum. The advantage of this method is that it only uses function values and not
derivatives, making it less sensitive to statistical fluctuations in the calculation of the func-
tion values compared to e.g. Migrad [138]. However, it does not give any error estimations
of the parameters or information about correlations between the parameters.
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DECORRELATION OF DIJETS AT LOW x AND Q2

M. HANSSON∗

Lund University,

Box 118, SE-221 00 Lund, Sweden

E-mail: magnus.hansson@hep.lu.se

Correlations in the azimuthal angle between dijets produced in deep inelastic e+p

scattering events have been investigated. Cross sections are presented as a function
of the azimuthal separation between the two jets in the hadronic center of mass
frame, ∆φ∗, in different regions of the photon virtuality Q2 and in different regions
of the Bjorken scaling variable xBj . The results are compared to the predictions
of QCD models implementing LO matrix elements, matched parton showers and
hadronisation as well as to NLO di-jet (α2

s) and NLO three-jet (α3
s) parton level

calculations corrected for hadronisation effects.

1. Introduction

Dijet production in deep inelastic ep-scattering is at low x dominated by

the boson gluon fusion process. In the DGLAP approximation, the dijets

are in LO produced back-to-back in the hadronic center of mass (HCM)

frame, i.e. the azimuthal angle between the two jets isa ∆φ∗ = 180◦, and

configurations with ∆φ∗ < 180◦ can only originate from higher order initial

or final state radiation. At low x, initial state radiation is in the DGLAP

approximation ordered in kt which implies that the transverse momentum

of the interacting gluon is restricted. However, at low x there may be

non-ordering in kt such that the gluon interacting with the photon may

take any kinematically allowed transverse momentum. This would give a

broader ∆φ∗ spectrum1 compared to that predicted by DGLAP. Also, in

approximations using unintegrated gluon densities the gluon has an initial

transverse momentum already in LO. Hence, azimuthal correlations at low

x could be used to distinguish between various models describing parton

dynamics and also to constrain the unintegrated gluon density.

∗On behalf of the H1 Collaboration
aObservables in the HCM frame are labeled with a ∗

1
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2

2. Event Selection

In this analysis, positron-proton data collected by the H1 experiment during

1999-2000 are used, corresponding to an integrated luminosity of Lint =

64.3 pb−1. Deep inelastic scattering (DIS) events are selected by requiring

E
′

e > 9 GeV, 156◦ < θe < 175◦, 5 < Q2 < 100 GeV2 and 0.1 < y < 0.7

where E
′

e and θe is the energy and polar angle of the scattered positron, Q2

is the virtuality of the exchanged photon and y is the inelasticity. Jets are

found using the inclusive kt-algorithm2 in the HCM frame and must fulfill

−1 < ηj < 2.5 and E∗

T,j > 5 GeV. If more than two jets are found, the two

jets closest to the scattered positron in η are chosen as the dijet system.

The data are corrected for limited detector resolution and acceptance using

detector simulated QED radiative events generated with the Monte Carlo

(MC) programs DJANGOH3 (with ARIADNE4) and RAPGAP5.

3. Results

The dijet cross section as a function of the azimuthal angle ∆φ∗ in bins

of xBj is compared to the NLO 2-jet (α2
s) and NLO 3-jet (α3

s) calcula-

tions obtained using the NLOJET++6 program. The CTEQ6M7 PDF

is used and the renormalisation and factorisation scales are chosen as

µr = µf =
(

E∗

T1
+E∗

T2

2

)

. Scale uncertainties are estimated by varying

µr and µf simultaneously a factor 2 up and 1/2 down. The calculations

are corrected for hadronisation effects using CASCADE8. Because of in-

frared sensitivity, the NLO calculations give no meaningful predictions in

the back-to-back bin (170◦ < ∆φ∗ < 180◦). As seen in Figure 1 the NLO

2-jet calculation, which effectively is a LO prediction for this observable, is

clearly not sufficient to describe the data. The NLO 3-jet calculation, effec-

tively being an NLO prediction, is closer to the data, but is systematically

low for ∆φ∗ < 150◦. However, the scale uncertainties are large, typically

20 - 50%, and cover the data in most bins. When normalising the data to

the total cross section between 0◦ < ∆φ∗ < 170◦ in each xBj bin, there is

partial cancellation of the scale uncertainties for the NLO calculations. As

can be seen in Figure 2, the data is no longer within the scale uncertainties

of the NLO 3-jet calculation.

Figure 3 shows the same data as in Figure 1 compared to the predictions

of the CCFM based CASCADE MC generator, using A09 and J2003 set210

for the unintegrated gluon density. Whereas CASCADE (J2003 set2) de-

scribes the data fairly well in all but the lowest xBj bin, CASCADE (A0)

fails to describe the data in all bins, predicting too many jets with small
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Figure 1. Dijet cross sections as a function of ∆φ∗ in bins of xBj. Data are compared
to NLO 3-jet (full line) and NLO 2-jet (dashed line) calculations.
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Figure 2. Dijet cross sections as a function of ∆φ∗ in bins of xBj normalised to the
visible cross section between 0◦ < ∆φ∗ < 170◦ in each xBj bin. Data are compared to
NLO 3-jet (full line) and NLO 2-jet (dashed line) calculations.
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Figure 3. Dijet cross sections as a function of ∆φ∗ in bins of xBj compared to the
predictions of CASCADE using two different unintegrated gluon densities.
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Figure 4. Dijet cross sections as a function of ∆φ∗ in bins of Q2. Data are compared
to NLO 3-jet (full line) and NLO 2-jet (dashed line) calculations.

∆φ∗. This indicates that the kt-spectrum of the gluon distribution of A0

is too hard. In addition to the dijet cross sections in bins of xBj , the same

observable has also been measured in bins of Q2, shown in Figure 4. The

same tendencies are seen as above, also when comparing to CASCADE (not

shown).

To summarise, NLO 3-jet calculations are not sufficient to describe the

azimuthal decorrelation of dijets at low ∆φ∗, indicating the need for higher

orders. Also, a sensitivity to the unintegrated gluon density is observed.
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Towards precision determination of uPDFs

Magnus Hansson1 and Hannes Jung2

1- Lund University

2- DESY, FRG

The unintegrated Parton Density Function of the gluon is obtained from a fit to dijet
production in DIS as measured at HERA. Reasonable descriptions of the measurements
are obtained, and a first attempt to constrain the intrinsic transverse momentum dis-
tribution at small k⊥ is presented [1].

1 Introduction
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Figure 1: The unintegrated gluon distribution
at a scale q̄ = 4 GeV for different values of
µ and σ of the intrinsic k⊥ distribution as a
function of x for fixed k⊥(top) and as a func-
tion of k⊥ (bottom) for fixed x

Unintegrated parton density functions (uPDFs)
are best suited to study details of the
hadronic final state in high energy ep and
also in pp collisions (for a review see [2–8]).
In general, the production cross section for
jets, heavy quarks or gauge bosons can
be written as a convolution of the uPDF
A(x, k2

⊥
, q̄) with the partonic off-shell cross

section σ̂(xi, k
2
⊥

), with xi, k⊥ being the lon-
gitudinal momentum fraction and the trans-
verse momentum of the interacting parton
i and q̄ being the factorization scale. For
example the cross section for ep → jets + X
can be written as:

dσjets

dET dη
=

∑

i

∫ ∫ ∫

dxi dQ2d . . .

·
[

dk2
⊥

xiA(xi, k
2
⊥

, q̄)
]

σ̂(xi, k
2
⊥

)

At high energies, the gluon density is dom-
inating for many processes, therefore here
only the gluon uPDF is considered. It has
already been shown in [9], that the predic-
tions of the total cross section as well as dif-
ferential distributions for heavy quark pro-
duction at HERA and the LHC agree well
in general with those coming from fixed NLO calculations. However, the details depend
crucially on a precise knowledge of the uPDF. Therefore precision fits to inclusive and ex-
clusive measurements have to be performed to determine precisely the free parameters of the
uPDF: the starting distribution function at a low scale Q0 ∼ 1 GeV as well as parameters
connected with αs and details of the splitting functions for the perturbative evolution.

An overview and discussion of uPDFs is given in [4–6]. In a previous paper [10] the
uPDF was determined from a pQCD fit using the CCFM evolution equation [11–14] to the
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structure function F2 and F c
2 with acceptable χ2/ndf . However, the small x behavior of the

uPDF obtained from F c
2 was very different compared to the one obtained from F2.

Here also measurements of high pt-dijet production in DIS at HERA [15–17] are inves-
tigated.

2 The method

The unintegrated gluon density is determined by a convolution of the non-perturbative
starting distribution A0(x) and the CCFM evolution denoted by Ã (x, k⊥, q̄):

xA(x, k⊥, q̄) =

∫

dx′A0(x
′, k⊥) · x

x′
Ã
( x

x′
, k⊥, q̄

)

In the perturbative evolution the gluon splitting function Pgg including non-singular terms
(as described in detail in [18, 19]) is applied.
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Figure 2: A scan in the parameter space of Bg

for d3σ
dQ2dxdEt

, d3σ
dQ2dxd∆

and d3σ
dQ2dxd∆η

as mea-

sured in [15].

The distribution A0 is parameterized at
the starting scale Q0 by:

xA0(x, k⊥) = Nx−Bg · (1 − x)Cg (1 − Dgx)

· exp

[

− (µ − k⊥)2

σ2

]

(1)

The parameters Ng, Bg, Cg, Dg as well as
µ, σ of A0 are free parameters which have to
be constrained by measurements. It turns
out, that Cg, Dg are not sensitive to the
data considered here, and are therefore fixed
to Cg = 4 and Dg = 0. The other param-
eters are determined by a fit [20] to mea-
surements such to minimize the χ2 defined
by:

χ2 =
∑

i

(

(T − D)
2

σ2 stat
i + σ2 sys

i

)

with T being the theory value and D the
measurement with the corresponding statis-
tical and systematic uncertainty.

3 The intrinsic k⊥distribution

The Gaussian form with µ = 0 and a width of σ ∼ 1.0 GeV of the intrinsic k⊥distribution
in eq.(1) is an assumption to parameterize our ignorance about the small k⊥behavior. In
the saturation model of GBW [21] the uPDF vanishes for small k⊥. Such a behavior can
be mimicked by a Gaussian distribution with µ ∼ Q0. The effect of choosing different µ is
illustrated in Fig. 1.
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4 Dijets in DIS

The sensitivity of the shape in x and the intrinsic k⊥was studied for dijets in DIS [15] in the
kinematic range of 5 < Q2 < 100 GeV2, 10−4 < x < 10−2, 0.1 < y < 0.7 and two jets with at
least Et > 5 GeV in the range −1 < η < 2.5. The differential cross sections dσ

dEt
, dσ

d∆η
, with

∆η being the rapidity difference between the highest Et jets are mainly sensitive to the x de-
pendence of the uPDF. The same is observed for the cross section dσ

d∆
with Et > Et min +∆

and Et min = 5 GeV. A scan over the parameter space of Bg is shown in Fig 2. With this
choice of parameters the cross sections are well described, giving a reasonable χ2/ndf . In
Tab. 1 the χ2/ndf are given for different values of Bg and the mean µ of the intrinsic k⊥ dis-
tribution.

χ2/ndf

Bg µ [GeV] dσ
dEt

dσ
d∆η

dσ
d∆

0.025 1.5 68/37=1.8 102/35=2.3 267/89=3.0
0.25 1.5 95/37=2.5 113/35=2.5 306/89=3.4
0.025 0 63/37=1.7 93/35=2.1 284/89=3.2
0.25 0 99/37=2.7 123/35=2.7 345/89=3.9

Table 1: Quality of the description of the different differential
cross sections using Bg = 0.025 and Bg = 0.25 together with
σ = 1.5 GeV.

From Tab. 1 it is
seen, that a value of
Bg = 0.025 is preferred,
and that the sensitivity
of these measurements to
the intrinsic k⊥ distribu-
tion is very small.

However, the cross
section as a function of
∆φ, where ∆φ is the dif-
ference in azimuthal an-

gle between the two leading jets in the hadronic center-of-mass frame, is directly sensitive
to the transverse momentum of the incoming parton, and thus a crucial test of the uPDF.

In Fig. 3 we show a comparison of the measurement of [17] with the prediction of CAS-
CADE using the uPDF determined before. A reasonable description of the measurement
is achieved. Table 2 shows the χ2/ndf obtained for these data and also to the azimuthal
correlations from [16].

χ2/ndf

Bg µ [GeV] dσ
dQ2d∆φ

(H1 prel) [16] dσ
d∆φ

(dijets ZEUS) [17]

0.025 1.5 163/29=5.6 332/19=17.5
0.25 1.5 128/29=4.4 234/19=12.3
0.025 0 200/29=6.9 417/19=22.0
0.25 0 237/29=8.2 338/19=17.8

Table 2: Quality of the description of dσ
d∆φ

using Bg = 0.025 and Bg =
0.25 together with σ = 1.5 GeV.

It is interest-
ing to observe,
that dσ

d∆φ
gives

also access to
Bg, now with
a preference to
a much steeper
initial gluon dis-
tribution. The
measurement
prefers a distri-

bution which decreases for very small transverse momenta k⊥. However it should be noted,
that the form of the intrinsic k⊥ distribution is not constrained.
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5 Conclusion
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Figure 3: The cross section dσ
d∆φ

as measured

by [17] compared to predictions using CAS-
CADE and the uPDF as in Tab. 2. The lower
plots always show the ratio R = theory−data

data
.

The shape of the starting gluon distribution
in x and k⊥ has been investigated with dijet
events in DIS. Whereas the cross sections as
a function of Et prefer a soft gluon distri-
bution (Bg ∼ 0.025) and show little sensi-
tivity to the intrinsic k⊥ distribution, the
cross sections as a function of ∆φ prefer a
much steeper gluon (Bg ∼ 0.25) and show
a clear preference to a intrinsic k⊥ distri-
bution which decreases for small k⊥. The
different x-slope of the initial gluon distri-
bution, as already observed in fits to F2

and F c
2 , is also observed in di-jet cross sec-

tion measurement. Further investigations
are obviously needed.
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