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AbstratIn this diploma thesis the development of a method to identify low energy eletrons ispresented. The implemented eletron �nder uses information from the traking and thealorimetry system of the H1 detetor. The estimators are ombined in a multivariateanalysis in order to train a single disriminating variable.The potential of the hosen estimating variables in separating signal from bakgroundis studied using data samples seleted from J/ψ (signal) and ρ (bakground) deays re-spetively. The desription of the estimators by Monte Carlo simulation is veri�ed.The good separation power of the estimators in onjuntion with the usage of sophis-tiated multivariate lassi�ers leads to an improved identi�ation method ompared toexisting eletron �nders. The presented eletron �nder allows to opperate in the energyregime of 1-3 GeV with an e�ieny and bakground rejetion both above 90 %.
KurzfassungIn dieser Diplomarbeit wird die Entwiklung einer Methode zur Identi�kation vonniederenergetishen Elektronen vorgestellt. Der implementierte Elektronen�nder benutztInformationen des Spurkammer- und des Kalorimetriesystems des H1 Detektors. DieEstimatoren werden in einer multivariaten Analyse kombiniert um eine einzelne Diskri-minierungsgrösse zu trainieren.Das Potential der gewählten Estimatoren zur Trennung von Signal und Hintergrund wirduntersuht unter der Verwendung von Datenproben selektiert in J/ψ (Signal) respektive

ρ (Hintergrund) Zerfällen. Die Beshreibung der Estimatoren durh Monte Carlo Simu-lationen wird überprüft.Die gute Trennwirkung der Estimatoren in Verbindung mit der Verwendung von hohen-twikelten multivariaten Sortieralgorithmen führt zu einer verbesserten Identi�kations-methode verglihen mit bestehenden Elektronen�ndern. Der dargelegte Elektronen�ndererlaubt es im Energiebereih von 1-3 GeV bei einer E�zienz und einer Hintergrundun-terdrükung von jeweils über 90 % eingesetzt zu werden.



Die Physik ist für die Physiker eigentlih viel zushwer.David Hilbert
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Chapter 1Introdution I do not know what I may appear to the world,but to myself I seem to have been only like a boyplaying on the sea-shore, and diverting myself innow and then �nding a smoother pebble or a pret-tier shell than ordinary, whilst the great oean oftruth lay all undisovered before me.Isaa Newton
The main purpose of this diploma thesis is to implement a method to identify low energyeletrons at the H1 experiment. The presented eletron �nder uses information from thetraking and the alorimetry system of the H1 detetor.Low energy eletrons (1-3 GeV) originate for instane from weak deays of heavy quarks(beauty- and harm-quarks at HERA). An identi�ation method of eletrons in this en-ergy regime an make an important ontribution to the understanding of heavy �avourphysis.Within this thesis a new eletron �nder is developed using large data samples on-sisting of deay eletrons from elasti J/ψ for signal and pions of ρ vetor mesons forbakground events. The data seletion is based on a new eletron trigger implementedfor the H1 experiment in 2006. Several estimators are de�ned based on alorimeter andtraking information in order to distinguish between signal (eletrons) and bakground(pions). The separation power of the spei� variables is determined by means of thedata samples and the desription of the estimators by Monte Carlo simulation is veri�ed.A disrimination quantity reverting to sophistiated lassi�er methods is derived by om-bining the estimators in a multivariate analysis. The disriminator is trained using theseleted data samples for signal and bakground. The presented eletron identi�ationalgorithm is supposed to be applied in a di�ult kinemati regime with large hadronibakground.The following list gives the outline of the thesis:
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Chapter 1. Introdution
• The next hapter gives a summary of the motivation for this study.
• In hapter 3 the HERA ollider and the detetor of the H1 experiment are in-trodued. The subsystems of the detetor delivering the information used for theeletron identi�ation are presented in more detail, namely the traking system andthe liquid argon alorimeter.
• The theory behind the identi�ation of eletrons is desribed in hapter 4 where therelevant proesses in the detetor for eletrons and expeted bakground partilesare presented.
• Chapter 5 gives a short overview of the basi omponents of the used Monte Carlosimulation.
• The hosen method and the employed quantities for the identi�ation of eletronsare disussed in hapter 6. The data seletion for the studies is followed by theresulting separation power of the estimators. The estimating variables are evalu-ated on data and Monte Carlo simulated events. The distributions of the spei�estimators are separately ompared between data and Monte Carlo simulation forsignal and bakground, in order to verify the desription of the hosen variables bysimulation.
• Chapter 7 starts with a general introdution to multivariate analysis. The usedlassi�er methods and the obtained results are disussed.
• A �rst appliation of the developed �nder and the orresponding results are pre-sented in hapter 8. The implemented method to identify eletrons is used to obtainan invariant mass distribution of the deay eletrons of inelasti J/ψ vetor mesons.
• In the last hapter the onlusions of this diploma thesis and a short outlook forfurther studies is given.
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Chapter 2Motivation Measure what is measurable, and make measur-able what is not so.Galileo Galilei
In the HERA ollider, loated at DESY in Hamburg, high energeti eletrons and protonsare brought to ollisions. The H1 experiment employs these ep-interations to investigatefor instane the prodution of heavy harm- and beauty-quarks. Heavy �avour physis isone of the main fouses of the H1 experiment. The investigated events are divided intotwo kinemati regions using the virtuality Q2 desribing the square of the momentumtransfer from the eletron to the proton. Events with a virtuality Q2 > 1 GeV2 arealled Deep Inelasti Sattering (DIS). The regime of Q2 < 1 GeV2 is referred to as thephotoprodution regime. The rate of ep-events dereases with an inreasing virtualitysine the ross setion is proportional to 1/Q4. Therefore the DIS events happen lessfrequently as those in the photoprodution regime.Heavy quarks, meaning b- and -quarks, deay via the weak interation. About 10 % ofthe deays are semileptoni, where the intermediate W±-boson produes a lepton and aneutrino. The harged leptons an be deteted, whereas the neutrinos are not traeablein the detetor. The aim of this diploma thesis is to develop an algorithm to identifyeletrons produed in semileptoni deays of heavy quarks.The most important prodution proess of heavy quarks at HERA is boson-gluon-fusion (BGF). This proess is illustrated in leading order in �gure 2.1. A gluon originat-ing from the proton forms a quark-antiquark pair. The (anti-)quark absorbs a photon,emitted by the eletron, arrying the virtuality Q2. The beauty-quark prodution issuppressed ompared to the harm-quark prodution sine the ross setion of the BGFdepends on the mass and the harge of the produed partiles.The measurement of the heavy quark prodution is used to determine the gluon stru-ture of the proton. The analysis of these events allows to test the preditions of thetheory of perturbative Quantum Chromodynamis (pQCD). A perturbative approah is9



Chapter 2. Motivation

Figure 2.1: Leading order Feynman diagramm of a boson gluon fusion proess.feasible for the regime of photoprodution in partiular for b-quarks sine the large massde�nes a hard sale.Advantages of the semileptoni deay hannel of heavy quarks for the measurement of theprodution ross setion are the large brunhing ratio of about 10 % and the possibilityto trigger suh events. The muoni deay hannel has already been studied in di�erentmeasurements sine the muons give a lear signal in the detetor. The information pro-vided by eletron and muon measurements is omplementary and therefore the studieson the eletron hannel should deliver further insights.Both experiments at HERA investigating ep-interations (H1 and ZEUS) have per-formed analyses of the b-quark prodution using data from the HERA-I run period. Theresults for the b-quark ross setion in DIS and photoprodution are shown in �gure 2.2.The measured b-quark ross setion is plotted versus the transversal momentum of theb-quark pt(b) relative to the preditions of pQCD. The measurements show a slightlyhigher ross setion than the theoretial predition. Therefore there is a great interestin verifying these results involving more statistis and to perform measurements for evenlower momentum partiles.In the ourse of the luminosity upgrade for the HERA-II running period an additionaltrigger system for the H1 detetor is installed. This Fast Trak Trigger (FTT) opensthe possibility to selet events more spei�. The FTT reonstruts traks of hargedpartiles with an auray omparable to the o�ine reonstrution and is able to identifyseleted topologies and event kinematis. Based on the FTT a new trigger is implementedallowing a fast and aurate identi�ation of low momentum eletron events at triggerlevel [1℄.In the standard H1 event reonstrution software, a software pakage is implementedto searh for eletron and muon signatures. This pakage is alled KALEP [2℄ and waswritten in 1994. It uses alorimeter and trak information to identify leptons. KALEP10



Figure 2.2: The ross setion of b-quark prodution measured by H1 and ZEUSrelative to the pQCD preditions as a funtion of the transversal momentum of theb-quark pt(b).has beome the standard tool to identify muons and eletrons at low energy.The performane of the KALEP eletron identi�ation is illustrated in �gure 2.3. Theoutput of the algorithm has a quality �ag, whih is denoted by the letter Q in the �gure.The eletron identi�ation by KALEP uses four estimators, ompound of the trak mo-mentum, energy measurements in the eletromagneti and hadroni part of the liquidargon alorimeter and a quantity for the shower length (see setion 3.2 for the desriptionof detetor omponents).No sharp uts on the used estimators are imposed but deviations from the de�ned limitsfor eah variable are summed up. The outome of this evaluation is divided into fourgroups. A higher eletron quality means a better bakground rejetion but leads to aredued e�ieny.The single data points for every quality step at the values e�ieny ǫ = 1 and rejetion
π = 1 are under�ow (respetively over�ow) points whih are taken into aount for theomputation.Although KALEP is the standard �nder, the algorithm is not appliable for everyanalysis. One of its problems is that the eletron-misidenti�ation probability is too highfor many appliations like the study of b→ eX deays.Sine the publiation of KALEP several analyses have been done, where an individuallepton �nder was developed. Unfortunately, none of these algorithms have been inludedin the H1 software environment and therefore the adaptions and the improvements arenot diretly available for new analyses. 11



Chapter 2. Motivation

Figure 2.3: Bakground rejetion versus signal e�ieny for the eletron identi�ationby KALEP. Data seletion: one KALEP-identi�ed eletron from J/ψ-andidates. [3℄One of the improved eletron �nders is desribed in a study of harm and beautyprodution at the H1 experiment using dilepton events [4℄. This identi�ation algorithmonsiders the di�erent shower shapes for eletrons and hadrons (see hapter 4) in more de-tails. After some preseletion uts the disrimination is performed using a linear method(Fisher Disriminant) to derive a single test statisti out of a set of four estimators. Theresulting performane for di�erent preseletion uts on one of the used estimators (E/p)an be seen in �gure 2.4.

Figure 2.4: Bakground rejetion versus signal e�ieny for the eletron identi�ationin the study of harm and beauty prodution at H1 using dilepton events [4℄. Dataseletion: one KALEP-identi�ed eletron from J/ψ-andidates. [3℄
12



Another method for the identi�ation of eletrons has been developed within a studyabout the measurement of the beauty ross setion using semileptoni deay into ele-trons at HERA [5℄. This eletron �nder uses neural networks to ombine alorimetershower shape parameters with the spei� energy loss dE/dx.The �gures learly show, that for an eletron �nder further improvements are ahiev-able. A new eletron �nder should be appliable in di�erent environments, espeiallyin the regime of lowest momenta (approximately 1 to 3 GeV). In this phase spae anappliation is for instane open heavy quark prodution.
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Chapter 2. Motivation
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Chapter 3The H1 Detetor at HERAIt doesn't matter how beautiful your theory is, itdoesn't matter how smart you are. If it doesn'tagree with experiment, it's wrong.Rihard Feynman
This hapter is an introdution to the H1 experiment at DESY (Deutshes ElektronenSynhrotron). Therefore a brief desription of the HERA storage ring is given and themain omponents of the H1 detetor are presented. A more detailed view of the alorime-try system and the traking system is given as it is the most important part of the detetorfor this thesis.3.1 HERAThe HERA (Hadron-Elektron Ring Anlage) ollider is loated at DESY in Hamburg(Germany) and onsists of two seperated rings for eletrons (and positrons respetively)and for protons in a ommon tunnel. The storage ring has a length of 6336 m and isshematially illustrated in �gure 3.1. One ring aelerates protons to an energy of upto 920 GeV, whereas the other ring aelerates eletrons (or positrons) to an energy of
27.6 GeV. The ep-ollisions yield a entre of mass energy √

s = 318 GeV. The protonsare aelerated ounterlokwise and ollide at two interation points in the middle ofthe straight parts of the ring, where the experiments H1 and ZEUS are situated, withthe lokwise rotating eletrons or positrons. The partiles in HERA are aelerated inbunhes and a bunh rossing takes plae every 96 ns. At the other two straight parts ofthe storage ring, two further experiments using only one of the beams are installed. TheHERMES-experiment uses the eletron/positron beam to perform ollision experimentson polarised gas targets. At the fourth interation point the experiment HERA-B wasstudying nuleon-proton interations until 2001.
15



Chapter 3. The H1 Detetor at HERA

Figure 3.1: Shemati illustration of the HERA ollider, the storage rings and itspre-aelerators at DESY. The experimental halls are denoted by the orrespondingexperiments.The protons are aelerated in three steps to 40 GeV before they are injeted fromthe smaller ring PETRA (Positron Elektron Tandem Ring Anlage) into HERA where the�nal aeleration step takes plae. The eletrons/positrons are injeted from PETRAinto HERA at an energy of 12 GeV after passing three pre-aelerators.Two harateristi quantities of a high energy physis aelerator are the entre of massenergy and the luminosity. Whereas the energy de�nes the aessible phase spae andthe possible reations, the luminosity L is related to the expeted rate of interations(dNdt ) for a given ross setion σ.
L = fn

NeletronNproton
4πσxσy

=
1

σ

dNdt ,where f is the frequeny of revolution for partiles in the ring and n the number ofolliding bunhes in eah beam. Neletron and Nproton are the number of partiles in thebunhes of the orresponding beams and σx and σy is the horizontal and vertial beamspread respetively.The HERA storage ring omprehends up to 180 bunhes for eah beam where every16



3.2. The H1 Detetorbunh onsists of the order of 1010 partiles.The �rst running period of HERA (HERA-I) started in 1992 and ended in summer 2000.In the following shutdown period, lasting several months, an extensive upgrade was per-formed. Within the experiments H1 and ZEUS additional superonduting foussingmagnets were installed, ahieving a redution in the beam size. Whereas the new bend-ing of the beam fored other detetor omponents to be adjusted, the luminosity seen bythe experiments has been inreased.After this extended shutdown and upgrade period, HERA-II was operated until the endof june 2007.3.2 The H1 DetetorThe H1 detetor is a general purpose detetor loated in the north of the HERA ring. Itwas built and maintained by a ollaboration of physiists from many institutes loated indi�erent ountries. The detetor is apable of identifying neutral and harged partilesoriginating from the eletron proton interation.The protons pass the H1 detetor along the z-axis, eletrons/positrons along the oppositediretion. The partiles are brought to ollision at the nominal interation point loatedin the middle of the detetor. The design of the detetor allows to over almost theomplete solid angle of 4π around the interation point. In order to respet the di�erentenergies of the olliding beams, the detetor is built asymmetrially.In �gure 3.2 a shemati sideview of the H1 detetor is shown.The oordinate system used by the H1 experiment is orientated suh that the positive
z-axis points in diretion of the proton beam, alled the forward diretion. The xy-planeis perpendiular to this diretion where x points to the enter of the HERA ring and yupwards. The origin of the H1 oordinate system is the nominal interation point. Thepolar angle θ is de�ned as the angle between the trajetory of the partile and the z-axis.The azimuthal angle φ is de�ned in the xy-plane where φ = 0 orresponds to the positive
x-axis.The H1 experiment onsists of three main setions for di�erent detetion purposes.These setions are the traking hambers, the alorimeter and the muon system, whereevery setion is made up of several sub-detetors. The di�erent omponents are builtylindrial around the beam line. The traking detetors are loated losest to the beamline and measure traks of harged partiles. They are surrounded by the alorimeterwhih measures partile energies. The outmost part is the muon system whih detetsmuons and high energy hadrons.A omprehensive desription of the H1 detetor an be found in [6℄.
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Chapter 3. The H1 Detetor at HERA

r

Figure 3.2: A longitudinal ut through the H1 detetor showing the main omponentsof the H1 detetor. The legend is shown in table 3.1 for the di�erent onstituents. Theoordinate system used in H1 is shown on the top right and its origin is loated at theinteration point (WWP) denoted by (1).18



3.2. The H1 DetetorDetetor omponent Abbreviation1 Nominal interation point IP (WWP)Traking detetors2 Central silion traker CST3 Bakward silion traker BST4 Forward silion traker FST5 Central inner proportional hamber CIP6 Central outer z-hamber COZ7 Inner entral jet hamber CJC18 Outer entral jet hamber CJC29 Forward traking detetors FTD10 Bakward proportional hamber BPCCalorimeters11 Liquid argon ryostat12 Liquid argon eletromagneti alorimeter LAr ECAL13 Liquid argon hadroni alorimeter LAr HCAL14 Liquid argon ryogenis system15 Eletromagneti spaghetti alorimeter SpaCal elm.16 Hadroni spaghetti alorimeter SpaCal hadr.17 Plug alorimeter Plug18 Superonduting solenoidMuon detetors19 Instumented iron (entral muon / tail ather) CMD/TC20 Forward muon detetor (inl. toroid magnet) FMD21 New superonduting fousing magnets GO/GG22 Conrete shieldingTable 3.1: Legend to �gure 3.2: The main omponents of the H1 detetor.
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Chapter 3. The H1 Detetor at HERA3.2.1 Traking DetetorsThe traking system of the H1 detetor onsists of preision silion solid-state detetors,multiple wire proportional hambers and drift hambers (see �gure 3.3) and is dividedinto a Central and a Forward Traking Detetor (CTD and FTD). The silion detetorsare used to identify deay verties from long lived partiles, whereas the drift hambersare responsible for the reonstrution of the traks of the partiles. The fast signals ofthe proportional hambers are mainly used for triggering purposes. The preise positionmeasurements of the drift hambers allow to determine the momentum of harged par-tiles, as their trajetory is bent beause of the applied magneti �eld in the detetor.The superonduting solenoid loated outside of the alorimeter produes this nearlyhomogeneous magneti �eld of 1.15 T.

Figure 3.3: Radial view of the entral traking system of the H1 experiment. Thefollowing omponents are shown in radial order starting from the beam pipe: (1) CentralSilion Traker CST, (2) Central Inner Proportional Chamber CIP, (3) Central JetChamber 1 CJC1, (4) Central Outer z-Chamber COZ, (5) Central Jet Chamber 2CJC2. The signal wires in CJC1 and CJC2 parallel to the beam line are illustrated bydots.The innermost traking detetors are the silion detetors where the Central SilionTraker (CST) onsists of two layers of double-sided silion detetors with an angularoverage of 30◦ < θ < 150◦. The two layers enlosing the beam pipe have radii between4 and 13 cm in an elliptial arrangement adapted from the beam pipe pro�le. In forwardand bakward diretion there are two more silion traking detetors installed (FST andBST respetively) to get a better overage for traking in the polar angle θ.Going from the beam pipe outward, the CST is followed by the Central Inner Propor-tional Chamber (CIP), whih is a multi-wire proportional hamber with a pad readout.The signal pads are installed perpendiular to the beam line and the CIP surrounds theCST irularly to over a polar angle range of 11◦ < θ < 169◦. The fast traking in-formation delivered by this detetor allows to reonstrut the position of an interation20



3.2. The H1 Detetoralong the beam line and the high time resolution is used for triggering. Due to the fastsignal proessing the signal from the proportional hamber determines the time of theinteration.The inner traking devies are surrounded by the main omponent of the traking systemat H1 the Central Jet Chamber (CJC). This oaxial drift hamber is split into an innerring (CJC1) and an outer ring (CJC2). The drift hambers onsist of several layers ofsense wires loated parallel to the beam line and form 30 azimuthal drift ells for CJC1and 60 ells for CJC2 respetively. The exat position of the partile an be determinedby the known position of the wire, the drift time of the indued harges to the signalwire and the drift veloity. The position along the wire is determined from the ratio ofthe harges read out from both wire ends. The preise timing information determined bythe CJC helps in reognising events from osmi ray muons, where the signal from theupper segment of the trak is earlier registered than the lower one. A polar angle rangeof 20◦ < θ < 160◦ is overed and the information from the CJC is used by the Fast TrakTrigger (FTT) as input signals. The traks deteted by the CJC have a high resolutionin rφ but a worse in z-diretion. Therefore the entral outer z-hamber (COZ) is loatedbetween CJC1 and CJC2 to determine the exat z-position of the traks in this diretionusing the drift time to the signal wires whih are oriented perpendiular to the z-axis.In the forward region the detetor is instrumented with three planar drift hamber mod-ules (FTD) measuring traks in an aeptane region of 7◦ < θ < 25◦ whereas in thebakward region an additional proportional hamber (BPC) is mounted to measure theangle of the sattered eletron from the ep-interation.The measurement of the spei� energy loss of a partile in material dE/dx is per-formed using the information of the Central Jet Chamber. The measurement is obtainedby integration of the harges read out from the CJC wires. To get a useful result numer-ous orretions have to be applied, whih will not be disussed in further details. Thepartile mass dependene of dE/dx in the CJC allows to use this quantity in order toobtain a partile identi�ation.3.2.2 CalorimetersThe energy of both harged and neutral partiles an be measured with alorimeters.The atual amount of deposited energy in a alorimeter depends on the partile type, itsmomentum and the alorimeter on�guration. The alorimetry system of the H1 exper-iment onsists of two main alorimeters. The forward and entral region is overed by aLiquid Argon (LAr) Calorimeter (4◦ < θ < 153◦) whih surrounds the H1 traker. TheSpaghetti Calorimeter (SpaCal) measures the energy of passing partiles in the bakwardregion of the detetor.The SpaCal is a lead-sintillating �bre alorimeter ompound of an eletromagnetiand a hadroni setion. The polar angle range 153◦ < θ < 173◦ is overed and dueto the �ne granularity the energy and the impat position of partiles an be measured21



Chapter 3. The H1 Detetor at HERAwith high auray. The reahed energy resolution in the eletromagneti setion is
σ(E)/E ≃ 0.08/

√

E/GeV ⊕ 0.01 ompared to σ(E)/E ≃ 0.30/
√

E/GeV ⊕ 0.07 in thehadroni part. Furthermore the SpaCal has an exellent time resolution of about 1 ns.Aording to its properties and the loation in the detetor, the main task of the SpaCalis to performe aurate measurements on the sattered beam eletron.The liquid argon alorimeter is a non-ompensating sampling alorimeter. It is dividedin an eletromagneti (ECAL) and a hadroni (HCAL) part. The eletromagneti partmeasures the energy of eletrons and photons, whereas the energy of hadrons is measuredusing the eletromagneti and the hadroni part of the alorimeter. The energy of thesepartiles is measured in the LAr alorimeter by absorption while muons deposit only asmall amount of energy in both parts of the LAr alorimeter by ionisation. In ase of lowenergy pions it is possible that they get absorbed already in the eletromagneti part ofthe alorimeter without reahing the hadroni part. The alorimeter signal of this pionsould be mistaken as those of eletrons.The ative material of this alorimeter is liquid argon whih is ooled down to −183 ◦Cby a ryostati system around the alorimeter. The absorbing layers are made of lead inthe eletromagneti part whereas stainless steel is used in the hadroni part. The widthof the eletromagneti part orresponds to 20 - 30 radiation lengths, that of the hadronipart orresponds to 4.7 - 7 interation lengths. The amount of dead material betweenthe traking detetor and the alorimeter has been redued to a minimum.The alorimeter is divided into eight wheels along the z-diretion. They are alled a-ording to their position in the alorimeter (see �gure 3.4). The wheels in the entralregion are the entral barrels denoted by CB1 - 3, those in the forward region are theforward barrels (FB1 - 2). The inner and outer forward (IF and OF) wheels are loatedat the end of the alorimeter in z-diretion, whereas the bakward barrel (BB) is loatedat the opposite end. Modules with a designation ending in 'E' form the eletromagnetisetion, whereas modules ending in 'H' belong to the hadroni setion. The smallestunit onsisting of absorber and ative material whih is read out is alled alorimeterell. The segmentation into ells and the orientation of the absorber plates is di�erentfor the spei� wheels aording to their position along the z-axis. The orientation ofthe absorber plates in the wheels is hoosen suh that the partiles originating from theinteration point always pass the plates with an angle bigger than 45◦. The segmentationof the liquid argon alorimeter into wheels, the orientation of the absorber plates andthe eletromagneti and hadroni setions of the alorimeter are illustrated in �gure 3.4.The spae between the wheels is not instrumented and is therefore dead material. Everywheel of the liquid argon alorimeter is divided into eight otants in the r-φ-plane. Thisis shown for the wheel CB2 in �gure 3.5. The spae between the otants is not instru-mented either.The LAr alorimeter is highly segmented in ells, whih ollet the harges from the ion-isation proesses in the ative material indued by the passing partiles. The alorimeterreonstrution program onverts the harges to energies in the alorimeter ells individ-22



3.2. The H1 Detetor

Figure 3.4: The upper half of the liquid argon alorimeter (r-z-view). The alorimeteris divided into 8 wheels. The entral barrels are denoted by CB 1 - 3 and the forwardbarrels by FB 1 - 2. The parts in the most forward region of the alorimeter are alledinner forward (IF) and outer forward (OF) that in the bakward region is alled bak-ward barrel (BB). Modules with a designation ending in 'E' form the eletromagnetisetion, whereas modules ending in 'H' belong to the hadroni setion. In every part ofthe alorimeter the orientation of the absorber plates is illustrated by lines.ually for the eletromagneti and the hadroni part of the alorimeter. The eletromag-neti setion onsists of about 31000 read out hannels leading to an energy resolution of
σ(E)/E ≃ 0.11/

√

E/GeV⊕0.01, whih has been determined in test beam measurements.In the hadroni part the granularity is muh oarser with a total number of about 13500readout hannels. An energy resolution of σ(E)/E ≃ 0.50/
√

E/GeV ⊕ 0.02 is ahievedin this part of the alorimeter [7℄.The liquid argon alorimeter is equipped with a trigger system whih delivers a sig-nal for the �rst trigger level by summing the energy deposits in ertain regions of thealorimeter. It is for instane possible to trigger on a high loal energy deposition or aspei� event on�guration in the alorimeter.3.2.3 Muon DetetorsAs mentioned in the desription of the alorimeters muons mainly lose their energy inionisation proesses. This leads to a higher penetration depth ompared to eletrons,photons and hadrons. Therefore the muon detetor is loated outside of the alorimterysystem allowing the eletrons, photons and hadrons to be absorbed before reahing themuon detetor. In the H1 detetor the massive magneti �eld returning iron yoke of thesolenoid is laminated and instrumented with limited streamer tubes to measure muontraks. This sensitive modules are installed between the plates of the iron yoke. Themuons need to have a minimum energy of 2 GeV in order to reah the muon detetor.23



Chapter 3. The H1 Detetor at HERA

Figure 3.5: The LAr wheel CB2 in a r-φ-view whih is omposed of an inner eletro-magneti setion, CB2E, and an outer hadroni setion, CB2H, of the alorimeter. Thespae between the otants of the alorimeter wheel is not instrumented.Some of the streamer hamber layers in the iron module (sine deember 2006 also theones in the forward region) are used by the instrumented iron muon trigger to seletmuon events.The Central Muon Detetor (CMD) onsisting of the bakward endap, the bakwardbarrel, the forward barrel and the forward endap has an angular aeptane of 5◦ < θ <
175◦. The angular aeptane of the Forward Muon Detetor (FMD) starts at θ = 3◦,reahes full azimuthal overage at θ = 5◦ and extends to θ = 17◦.
3.2.4 Luminosity MeasurementThe luminosity L delivered by HERA is determined by the measurement of the rate atwhih the Bethe-Heitler-proess ours. The Bethe-Heitler-proess ep→ epγ is very pre-isely alulable in the theory of quantum eletro dynamis. Beside that its ross setionis large and therefore this proess is suitable to determine the luminosity of the ollider.The produed photons are deteted in a photon detetor loated at z = −103 m [8℄.
24



3.2. The H1 Detetor3.2.5 Trigger SystemThe frequeny of the bunh rossing at the HERA ollider is about 10.4 MHz and theexpeted rate of eletron-proton sattering proesses is about 1 kHz. Signals in the H1detetor produed by bakground proesses are up to 1000 times more frequently thanthe signals from interesting physial proesses. The dead-time of the H1 detetor duringthe readout of an event limits the readout rate of the detetor to 50 Hz. Therefore thetrigger system must be able to prevent the readout of bakground proesses in a reason-able manner as well as to selet only physial proesses whih are important for furtheranalyses.The trigger system at the H1 experiment ats as a four level �lter. Every step reduesthe event rate gradually whih inreases the available time for the analysis of the eventin the next level. In total the event rate is redued to about 10 − 25 Hz, permitting tostore all the data permanently.On the �rst level (L1) the information delivered by the sub-detetors is used on a hard-ware level to generate trigger signals. In ase of a positive trigger deision (L1-keepsignal), the information available from L1 is ombined on the seond level (L2) in neuralnetworks or using topologial riteria. The third trigger level was implemented withinthe Fast Trak Trigger (FTT) projet for the HERA-II running period [9℄. The FTTitself works on the levels L1 to L3. The traks of the FTT-L2 system and the data fromother trigger systems are used as input signals into L3. With this information a partialevent reonstrution is performed on ommerial proessors. The fourth level �nally a-omplishes a full event reonstrution, after the readout proess is ompleted, running onstandard PCs. That is to say that the L4 level does not ontribute to the dead-time ofthe detetor. At the end the detetor information of the events passing all trigger levelsare permanently stored.
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Chapter 4Eletron Identi�ationSine the mathematiians have invaded the the-ory of relativity, I do not understand it myselfanymore.Albert Einstein
This setion is about the theory behind the identi�ation of eletrons. In order to identifypartiles interating in detetors, one has to understand how di�erent partiles at whenpassing the detetor.The main goal of this �nder is to distinguish between eletrons (e±) and hadrons. Es-peially eletrons from pions, sine pions are the most important ontribution to thebakground. Therefore the interations of eletrons and hadrons are disussed.4.1 Eletromagneti ShowerA partile shower is a asade of seondary partiles produed when an inoming high en-ergeti partile interats with dense matter. In experiments this is normally the alorime-ter in the detetor. In this interation new partiles are produed with less energy thanthe primary partile. Eah produed partile has the ability to interat with matter torepeat the proess. This ontinues until many low-energy partiles are produed whoseenergies are low enough to be absorbed in the detetor material. The harateristi shapeof this proedure leads to the onept "Shower ". A piture of a measured eletromag-neti shower in the ICARUS liquid argon drift hamber is shown in �gure 4.1.
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Chapter 4. Eletron Identifiation
Figure 4.1: Eletromagneti shower observed in the ICARUS LAr drift hamber dur-ing the tehnial run with osmi rays at Pavia, summer 2001 [10℄.In ase of eletrons the interation of the inoming partile with the dense matter isalled eletromagneti. The most important eletromagneti proesses in the alorimeterare bremsstrahlung, where the eletron emits a photon (e → eγ), and pair prodution,where the photon onverts into an eletron-positron pair (γ → e+e−). The developmentof an eletromagneti shower is shown shematially in �gure 4.2.Underneath a ertain ritial energy, the eletrons start to loose energy mainly throughionisation until they get absorbed by the dense matter.Sine eletrons are light partiles, they loose their energy in a smaller number of ol-lisions than heavy harged partiles. In fat their mass is equivalent to the mass of theorbital eletrons in the matter with whih they are interating. This means that a largefration of the energy of the inoming eletron an be lost in a single interation. If theeletron interats with a nuleus it is even possible for the eletron to hange diretionof propagation or to get baksattered. This leads to large deviations from the inomingdiretion of the eletron. This also means, that the paths of monoenergeti eletrons donot neessarily look similar.In order to identify a asade in the alorimeter as an eletromagneti shower, or morepreisely as an eletron, the longitudinal and lateral distribution of the energy deposi-tions is important.The longitudinal development is ontrolled by the high-energy part of the shower. Thismeans that the length of the asade sales with the radiation length in the given mate-rial and logarithmi in the inoming energy [11℄. The number of eletrons in the showerdrops more quikly with the depth of penetration than the energy deposition. This isbeause of the inreasing number of photons in the shower due to bremsstrahlung in theabsorber material.The maximum number of partiles in the asade is reahed, when the average energyper partile drops below the material dependent ritial energy. From this point no morenew partiles are produed and the shower deays slowly through ionisation losses foreletrons and by Compton sattering and absorption for photons (see �gure 4.3).
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4.1. Eletromagneti Shower
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Figure 4.2: Shematial illustration of an eletromagneti shower in the alorimeter.Shown are the proesses of bremsstrahlung (e→ eγ) and pair prodution (γ → e+e−).
The lateral shower distribution is well desribed by a heuristi onstant, the "MoliereRadius". Typially 95% of an eletromagneti shower is ontained in a ylinder withradius 2RMoliere. The Moliere Radius is de�ned by R = X0 · ES

Ecritical
, where the saleenergy is ES =

√

4π
α mec

2, X0 the radiation length and Ecritical the ritial energy of themedium [11℄.Reapitulatory one an say that showers of eletrons are narrow and homogeneous.The sidewise enlargement is determined by the sattering proesses of the eletrons andpositrons in the beginning of the shower origin and by Compton sattering after thephase of pair prodution.
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Chapter 4. Eletron Identifiation

Figure 4.3: Frational energy loss of eletrons in lead as a funtion of eletron energy.The ritial energy is de�ned as the point where the ionisation loss is equal to thebremsstrahlung loss [11℄.4.2 Hadroni ShowerAs hadrons onsist of quarks, the main interation in dense matter is indued by thestrong fore, leading to a variety of possible proesses and a di�erent shower shape inthe detetor ompared to eletrons. This is apitalised to distinguish hadrons from otherpartiles for the identi�ation.In the detetor the inoming hadron interats with the nulei in the material and produesseveral lower-energy hadrons. At high energy, these interations are mainly multipartileprodution and partile emission originating from nulear deay of exited nulei, usu-ally pions and nuleons. These proesses ontinue, as in the eletromagneti ase, untilall partiles are stopped and absorbed in the material. Due to the harateristis of thestrong fore this hadronisation of the inoming quark builds up a one in the alorimeter.The binding energy, whih is needed for the release of nuleons, is too small to bedeteted by the H1 alorimeter. Supplementary, energy may be hidden due to muons orneutrinos or by the delay until exited nulei emit their absorbed energy. Hadrons analso interat via the eletromagneti interation, therefore the shower an partially beeletromagneti. For example the deay of a neutral pion (π0 → γγ) indues an eletro-magneti asade. The total energy fration of the eletromagneti sub-shower may getbigger than the hadroni fration in speial proesses. All of this leads to worse energyresolution for the hadroni part of the alorimeter than for the eletromagneti, sine thedetetable energy of an eletron shower is always larger than that of a hadroni shower.This property of the alorimeter is alled non-ompensating.For high-energy hadrons the shower length depends logarithmially on the energy ofthe inoming partile and linearly on the interation length λ in the orresponding mate-30



4.3. dE/dxrial. For the lateral distribution one �nds that 95% of the hadroni shower is ontainedin a ylinder with radius λ.Hadroni showers do not only our in partile detetors but also in nature. In earth'satmosphere they origin from osmi rays, whih usually are hadrons. An illustration anbe seen in �gure 4.4.
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Figure 4.4: An illustration of a hadroni shower in the atmosphere. The inominghadron interats via the strong fore. The seondary partiles an interat also viathe eletromagneti fore (π0) leading to a hadroni and a eletromagneti part of theshower.To summarise again, the lateral distribution of hadroni showers is onsisting of a nar-row one, emanating from the eletromagneti sub-shower, and a radially surroundingirregular halo.4.3 dE/dxThe energy loss of a partile in matter is already used to measure the energy of an inom-ing partile, but the spei� energy loss per path length dEdx is also very useful to identifypartiles. For the energy measurement it is important to ollet the whole energy of thepartile in the alorimeter. To identify the partile in addition, it is interesting how theenergy is lost along the path through the detetor, in partiular whih proesses do our.31



Chapter 4. Eletron IdentifiationThe spei� energy loss per path length of a partile traversing matter is desribed bythe Bethe-Bloh formula [11℄:
−dEdx = κz2Z
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− β2 − δ (βγ)
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2 with- NA: Avogadro's number 6.0221415 · 1023 mol−1,- re: Classial eletron radius e2

4πǫ0mec2
,- me: Eletron mass,- c: Speed of light,- e: Eletron harge,

• z: Charge of inident partile in units of e,
• Z: Atomi number of absorber,
• β = v

c : Speed of inident partile v in units of c,
• γ = 1√

1−β2
: Boost of inident partile,

• I: Mean exitation energy of eletrons in the absorber,
• Tmax: Maximum kineti energy whih an be imparted to a free eletron in a singleollision by an inident partile of mass M

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
,

• δ(βγ): Density e�et orretion to ionisation energy loss.
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4.3. dE/dxAt the H1 experiment the spei� energy loss is determined by means of the CJC. It ispossible to determine the mass of the passing partile from the measurement of dE/dxand of the momentum. Using a Likelihood-method one an then indiate a probabilityfor a partile identi�ation. The numeri value of the spei� energy loss is proportionalto the harge that is deposited by the passing partile (ionisation of the moleules inthe gas hamber) and therefore proportional to the harge olleted by the wire in thehamber.A omprehensive disussion of dEdx measurement at H1 an be found in [12℄.In �gure 4.5 one an see the spei� energy loss per unit length as a funtion of themomentum of di�erent types of partiles, measured at the H1 experiment.

Figure 4.5: Satterplot of the spei� energy loss versus the trak momentum [12℄.
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Chapter 5Monte Carlo ModellingA mathematial truth is neither simple nor om-pliated in itself, it is.Emile Lemoine
Various physial and mathematial systems, in partiular in high energy physis, an besimulated by the use of omputational algorithms. A widely used lass for this purposeare the Monte Carlo (MC) methods. One of their mannerisms is, that they are stohas-ti and usually use pseudo random numbers in ontrast to other simulation methods.Beause of the repetition of algorithms and the large number of alulations involved,Monte Carlo is a method suited for numerial alulation using a omputer.Monte Carlo event generators are used in partile physis to model events as detailedas ould be observed by a perfet detetor. Three steps are performed in order to useMonte Carlo simulations for eletron-proton ollisions at the H1 experiment:

• Generator: Models and physis theories are onsidered and simulated by a ded-iated program for the generation of events. In this thesis the event generatorDiffVM is used to generate the four-vetors of the attending partiles by ran-domly sampling the physial distributions and respeting the kinemati variables.The events studied in this thesis are the deays of the vetor mesons J/ψ → e+e−and ρ→ π+π−.
• Simulation: The behaviour of the passing partile and the detetor response issimulated for the seleted events by the use of a software desribing the detetor(H1Sim) whih relies on a program pakage desribing the di�erent interationswith material (Geant) and the eletroni readout.
• Reonstrution: The simulated detetor output is delivered to a reonstrution al-gorithm (H1Re). This step should be ideally the same for Monte Carlo and35



Chapter 5. Monte Carlo Modellingdata events, having the same output format, whih then an diretly be used foran analysis.
5.1 The Di�VM GeneratorIn order to simulate the di�rative prodution of vetor mesons at HERA, the Di�VMGenerator [13℄ was written. The Vetor Dominane Model and the Regge theory formthe ore of this generator in eletron-proton sattering.First a virtual photon is generated (e → eγ) aording to the Weizsäker-Williamsapproximation [14℄, [15℄. The photon �utuates then into a virtual vetor meson priorto the di�rative interation, by pomeron exhange with the proton.The dependene of the γp ross setion for vetor meson prodution from the entre ofmass energy and the momentum transfer at the proton vertex is handled in the frame-work of Regge theory.The ross setion for elasti sattering of a vetor meson and a proton an be written asdσdt =

dσdt ∣∣∣∣t=0,W=W0

· e−b|t| · (W
W0

)4ǫ , (5.1.1)where t is the momentum transfer, W the entre of masss energy of the γp system, b theslope parameter and ǫ a free parameter.The vetor meson and the proton might be intat after the interation. In this spei�ase, the vetor meson is produed elastially. In the framework of this thesis, only suhtype of events are studied.
5.2 Detetor SimulationThe partiles and their four-vetors are the output of DiffVM. In order to make a mean-ingfull omparison between data and the simulated events, the outome of DiffVM isgiven to the H1sim program, whih makes the simulation of the H1 detetor response.This pakage relies on Geant 3 [16℄, used to simulate the detetor response and theeletroni readout. After this step, the digitised information is given as an input of theevent reonstrution H1Re. This program is run on both data and Monte Carlo, issuingthe same format for real and simulated events.
36



5.3. The Single Partile Generator5.3 The Single Partile GeneratorThis generator allows to examine the detetor response for a spei� kind of partile, likeeletron or pion, in a given phase spae. The momentum p, the polar angle θ and theazimuthal angle φ are uniformly distributed in a �xed interval and given as an input tothe full detetor simulation.A detailed disussion of Monte Carlo modelling an be found for instane in [17℄and [18℄.
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Chapter 6Eletron Finder We have to remember that what we observe is notnature herself, but nature exposed to our methodof questioning.Werner Heisenberg
In hapter 2 a short overview of eletron �nders used or developed at the H1 experimentwas given. In this hapter the onstitutional onept and the method of the eletron�nder evolved in this thesis is followed by a desription of the used quantities. Moreoverthe seletion of the data used in this study is presented. At the end a omparison of theused quantities for signal and bakground as well as between data and simulation is given.6.1 MethodIn this setion the basi ideas of a general eletron �nder based on trak and alorimeterinformation are presented.As already mentioned in the motivation for this thesis (hapter 2), the ideas behind ele-tron identi�ation are not new. In this work the ideas developed in two studies at H1([4℄ and [5℄) have been used as a starting point.The main ontribution to the bakground for an eletron identi�ation at the H1 exper-iment is from pions. This means that one has to be able to distinguish between eletronsand pions. For this disrimination the hoie of parameters with good separation powerbetween eletrons (signal) and pions (bakground) is required. This parameters are basedon di�erenes in the way the partiles deposit their energy in the alorimeter and passthrough the entral traker (traking information).The proedure for implementing the eletron �nder is to hoose a set of estimators withadequate separation power aording to the expeted behaviour of eletrons and pionsin the alorimeter. This estimators are then tested on eletron and pion data samples39



Chapter 6. Eletron Finder(desribed in setion 6.3) and �nally used as input variables to a multivariate analysis(see hapter 7) in order to get a disrimination between signal (eletron) and bakground(pion). In addition the desription of the used variables by Monte Carlo simulation isveri�ed (setion 6.4).EstimatorsAs disussed in setion 4.2, hadrons only deposit a fration of their energy in the eletro-magneti alorimeter and in addition some energy deposition is lost to the alorimetry.Hene the measured energy in the eletromagneti part of the alorimeter is expetedto be smaller than the energy dedued from the momentum assigned by the trakinghamber. For eletrons in ontrast, the indued eletromagneti shower is usually fullyontained in the eletromagneti part of the liquid argon alorimeter and therefore thisenergy should be omparable to the measured momentum.The ratio of the energy deposited in the eletromagneti alorimeter in a ylinder aroundthe elongated trak (radius R = 30 cm) and the momentum of the trak E
p leads to a�rst estimator to separate eletrons from hadrons.The hadroni shower is supposed to have a wider lateral extension in the alorimeterthan the eletromagneti shower. This is the idea behind a further estimator. For everytrak there are two ylinders de�ned around the ontinuation of the trajetory in thealorimeter with di�erent radii. The position and orientation of the ylinders is denotedin �gure 6.1. The used variable is then introdued as the fration of the energy in thesmaller (Ri = 15 cm) ylinder divided by the energy olleted in the wider (Ro = 30 cm)ylinder I = Einner

Eouter . This estimator desribes the lateral fration of the measured showerin the alorimeter. For eletrons one expets more or less all the energy deposition inthe smaller ylinder, leading to I ≈ 1.For the usage of this estimator in the ontext of eletron identi�ation, this variableserves also as an isolation riterion against hadroni showers. The hadroni shower on-sisting of the eletromagneti subshower and the surrounding halo leads to a value forthe isolation riterion I ≤ 1, as the hadroni energy deposition is spread over a widerlateral region.
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6.1. Method

Figure 6.1: Illustration of the de�ned ylinder around the elongated trak in thealorimeter. The dashed line represents the beam line, the solid line the trak of theprodued partile. The indued shower in the alorimeter is indiated in the smallylinder.The diret lateral distribution of the shower is exploited for the estimator Srad, a mea-sure for the lateral shower distribution. For this a shower diretion, de�ned by the trakmomentum vetor at the impat point into the eletromagneti part of the alorimeter(~patalo), is introdued. The perpendiular distane from this axis to a alorimeter ell(dist) is alulated (see �gure 6.2). The distane is then weighted by the squareroot ofthe deposited energy in the orresponding ell (√Eell). The distanes to all the ells ina ylinder of radius R = 30 cm around the trajetory are summed up with the mentionedweights:
Srad =

∑ells√Eell · dist2
∑ells√Eell .The distane is de�ned by the following expression:
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Chapter 6. Eletron Finder
dist =

|~rell × ~patalo|
|~patalo| .

Figure 6.2: Illustration of the used distane for the alulation of the estimator Srad.The perpendiular distane of the alorimeter ell to the momentum vetor of thepartile at the beginning of the alorimeter is denoted by dist.The di�erenes between eletrons and hadrons in the longitudinal energy distribution inthe alorimeter are used for another estimator. Eletrons deposit a large amount of theirenergy lose to the beginning of the alorimeter, as the bremsstrahlung starts immedi-ately after entering the alorimeter. On the other hand, hadrons deposit the energy overa longitudinally more extended region and the eletromagneti sub-shower starts deeperinside the alorimeter.Therefore the used measure for the shower length onsiders the position of the energydeposition along the path through the alorimeter and the amount of deposited energy.
Slen onsists of the sum over the alorimeter ells in a ylinder of radius R = 30 cmaround the trajetory, where the layer number is summed up and weighted by the mea-sured energy of the ell. The layers and the partitioning of the alorimeter is illustratedin �gure 6.3.

Slen =
∑ells Layer ·Eell

∑ellsEell .This quantity de�nes the longitudinal shower entre whih is also a measure for theshower length.The estimator whih uses the information from the Central Jet Chamber (CJC), de-sribes the spei� energy loss. The H1 software environment provides the Likelihood-value for the spei� energy loss of a partile in material dEdx , measured in the gas hamber(see setion 4.3). This Likelihood-value is derived by alulating the di�erene between42



6.1. Method

Figure 6.3: The layer and ell struture of the liquid argon alorimeter (r-φ view ofthe CB2 wheel). The layers are divided into eletromagneti and hadroni layers andnumbered.the expetation value for a spei� partile and the atual measurement. This valuefollows a χ2-distribution [17℄. The partile probability Likelihood LdE/dxpartile for eletronsand pions is used to de�ne the estimator. It is derived using the assumption that thepartile is either an eletron or a pion. This gives another separation quantity. For thedisrimination the normalised Likelihood is de�ned by:
LdE/dxnorm =

L
dE/dxeletron

L
dE/dxeletron + L

dE/dxpion .The last two estimators are the total measured energy in a ylinder around the trak ofradius R = 30 cm in the eletromagneti and hadroni part of the liquid argon alorime-ter, Eelmag respetively Ehad.In addition to the mentioned estimators, two more variables are given as input variablesto the training of the multivariate analysis. Namely the transverse momentum pT andthe polar angle θ. This happens in order to take into aount the energy dependenes ofthe given estimators and to respet the di�erenes of the alorimeter for di�erent θ (dif-ferent regions of the alorimeter, i.e. the barrels). This is further disussed in setion 6.4for the simulation and hapter 7 for the training proess of the multivariate analysis. 43



Chapter 6. Eletron FinderTo summarise, the presented eletron identi�ation is based on the following quantities:
• Eelmag(alo)

p(trak)

• Einner(alo)
Eouter(alo)

• Srad =
∑ells √Eell · dist2

Pells √Eell (alo)
• Slen =

∑ells Layer ·Eell
Pells Eell (alo)

• dEdx (trak)
• Eelmag (alo)
• Ehad (alo) .Where alo (trak) refers to a measurement of the quantity in the alorimeter (traker).The separation power of these variables is then tested on eletron and pion data sam-ples. Moreover the estimators are ompared to Monte Carlo simulation and then usedas input variables for a multivariate analysis to determine a disriminator.6.2 Test SamplesIn this setion the data seletion used for testing the estimators and the training ofthe disriminator is presented. There are two possibilities to build test samples. Thefollowing paragraphs desribe the seletion of the measured data in order to get datasamples. The disussion of the results ahieved by these samples is presented in se-tion 6.3. The seond possibility is to use Monte Carlo samples. This allows to studythe desired quantities in a simulated environment. These results are shown in setion 6.4.In order to qualify an estimator as a good separator, it has to be tested separately ona preferably lean sample for signal (eletrons) and bakground (pions). These samplesan be used to train the disriminator on signal and bakground too.In the following two paragraphs the seletion riteria for signal and bakground data is44



6.2. Test Samplesdesribed. Two well understood deays are hosen to selet events ontaining eletrons(J/ψ → e+e−) and pions (ρ→ π+π−) respetively.6.2.1 Eletron SampleAs a soure of isolated eletrons the deay of elasti J/ψ is used (J/ψ → e+e−, branhingratio (5.94 ± 0.06) % [11℄).The data used for this sample were taken in the years 2006 and 2007, when protons withenergies of 920 GeV were brought to ollision with eletrons or positrons of 27.6 GeV.Standard SeletionThe event seletion is done by requesting a di�rative J/ψ-andidate with two entraltraks only. All triggers were used.The eletron andidates from the J/ψ deay are seleted by the KALEP [2℄ �nder underthe restrition that the reonstruted invariant mass of the J/ψ lies between 1.3 GeVand 3.5 GeV.This seletion leads to the invariant J/ψ-mass peak shown in �gure 6.4.

Figure 6.4: Distribution of the reonstruted invariant mass mee of the deay J/ψ →
e+e− for the standard seletion.Sine not only the e�ieny of the KALEP eletron �nder is not so good but also itsbakground rejetion is always below 90 %, one expets that there are still other partilesleft in the sample, espeially pions. For higher e�ienies (lower KALEP-eletron qual-ity) the bakground rejetion drops onsiderably (see �gure 2.3). Therefore the sample is45



Chapter 6. Eletron Finderanalysed with the help of dEdx to separate the eletrons in the sample from other partiles.The dEdx -distribution in �gure 6.5 shows the amount of pions in the sample. The frationis about 23 %.

Figure 6.5: Output of the dEdx -analysis of the J/ψ eletron sample using the standardseletion. The dEdx distribution is given in Minimum Ionising Partile (MIP). The datapoints are �tted to two gaussian funtions for the eletron and the pion fration. Thesolid line represents the sum of the funtions.Improved SeletionIn order to get an eletron enrihed sample and to redue the bias introdued by the useof the KALEP �nder, a new data sample is seleted. The following riteria are applied:
• Number of di�rative J/ψ-andidates > 0

• Two entral traks
• Two traks in total
• Reonstruted invariant mass: 1.3 GeV < mee < 3.5 GeVThe lower boundary of the invariant mass is hosen suh that the radiative tail (see�gure 6.4) towards lower energy is inluded in the seletion.
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6.2. Test Samples
• One trak is identi�ed by KALEP as an eletron, the other is not probed by KALEPand to redue the bias used for the sample. The identi�ed trak is not seleted forthe sample.
• Likelihood-value of dEdx under an eletron assumption of both traks is LdE/dxnorm ≥ 0.5.The ut on dEdx is useful to redue the amount of pions. This an be illustrated byexamining the e�et of the dEdx -ut on a data sample without a dEdx -seletion. The dataseletion applied is the same as spei�ed for the improved seletion exept of the dEdx -ut.In �gure 6.6 on the left side the normalised dEdx -eletron Likelihood distribution, LdE/dxnorm ,of traks that are not probed with the KALEP �nder is shown, whereas the other trakis identi�ed by KALEP as an eletron. On the right hand side the same quantity isplotted but with the additional requirement that LdE/dxnorm of the KALEP-identi�ed trak,thus the other trak from the seleted event, lies above 0.5.

Figure 6.6: Normalised dEdx -eletron Likelihood distribution LdE/dxnorm of the not KALEP-probed trak without (left) and with (right) ut on L
dE/dxnorm of the KALEP-identi�edtrak.Figure 6.6 (left plot) again shows the ontamination of the eletron sample. The uton the normalised dEdx -eletron Likelihood (LdE/dxnorm > 0.5) on the KALEP-identi�ed trak(right plot) redues the bakground approximately by a fator of three, where everyevent with L

dE/dxnorm < 0.5 is de�ned as bakground. The redution in the number ofbakground-like events is learly visible and therefore shows the usefullness of this ut.Under the assumption that the bakground an be redued by a fator of three, the ut onboth seleted traks leads to a remaining bakground in the eletron sample of about 5 %.This revised event seletion leads to a rather pure eletron sample, whih is used forfurther tests. The invariant mass peak for this sample is shown in �gure 6.7. 47



Chapter 6. Eletron Finder

Figure 6.7: Distribution of the reonstruted invariant mass mee of the deay J/ψ →
e+e− for the improved seletion.6.2.2 Pion SampleA data sample of pions is used to represent the bakground in an event. It provides abasis to explore the separation power of the hosen estimators and it is needed for themultivariate analysis to train the disriminator.The seleted proess for pion prodution is the deay of a ρ meson (ρ→ π+π−, branhingratio ∼ 100 % [11℄). The used data is from the same period as for the eletron sample,the years 2006 and 2007.The event seletion is done by requesting a di�rative light vetormeson andidate,two entral traks and no other traks. The distane from the z-vertex position to thenominal interation point has to be smaller than 25 cm. Both traks have to ome fromthe primary vertex, the lower pt pion should have pt(trak) > 0.12 GeV and the higher

pt pion a transverse momentum larger than 0.7 GeV. In addition, two more uts areapplied, an angle restrition and a boundary for the mass. The polar angle should bein the interval 20◦ < θ < 160◦ whereas the reonstruted invariant mass is limited by
0.6 GeV < mππ < 1.1 GeV.This seletion gives the invariant mass distribution depited in �gure 6.8.After the promising outome of the investigation of the eletron sample with the helpof dE/dx, the desribed pion sample is also analysed. In �gure 6.9 the output of theanalysis is shown. The left side of the �gure shows the distribution for the presenteddata seletion, the right side after the optimisation with the help of dE/dx.48



6.2. Test Samples

Figure 6.8: Reonstruted invariant mass peak, mππ, for the presented event seletion.

Figure 6.9: Satter plot of the dE/dx distribution for the pion hypothesis versus thetrak momentum. Left: presented event seletion, right: after the applied uts.The satter plot of dE/dx under the assumption of a pion versus the momentum ofthe trak, learly shows the ontamination of the sample, mainly by other hadrons.In order to enrih the pion sample, three uts are applied simultaneously: on L
dE/dx
pion ,

L
dE/dx
norm with an eletron-pion assumption, as in the ase of the eletron sample, andon the timing information of the event from the CJC. The distribution of the dE/dx-Likelihood value of pions before and after the applied uts is shown in �gure 6.10. Theut on this quantity is de�nded by LdE/dx

pion > 0.05. 49



Chapter 6. Eletron Finder

Figure 6.10: L
dE/dx
pion distribution of the pion sample. The shaded histogram showsthe distribution after all applied uts.Although this is a loose ut, it redues the ontamination onsiderably.The normalised dE/dx-Likelihood using the eletron and the pion hypothesis is usedto redue the amount of eletrons in the pion sample. This quantity is de�ned in thesame way as for the eletron sample in setion 6.2.1. The distribution is presented in�gure 6.11.

Figure 6.11: L
dE/dx
norm distribution of the pion sample. The shaded histogram showsthe distribution after all applied uts.The distribution of the normalised Likelihood learly shows that the pion data sam-ple ontains a notieable amount of eletrons. For the new data seletion a ut at

L
dE/dx
norm = 0.8 is applied to redue the fration of the eletrons.
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6.2. Test SamplesIn order to improve the bakground rejetion the timing information of the gas ham-ber is used. The measured distribution and the applied uts are shown in �gure 6.12.

Figure 6.12: Timing information of the events used for the pion sample. The shadedhistogram shows the distribution after all applied uts.The timing information helps to selet the information whih atually belongs to theobserved event. The used ut on this quantity is de�ned by 405 · 0.2 ns < t < 505 · 0.2 ns,where the time zero point is not de�ned by the ep-interation.For further tests this new event seletion is used as the bakground (pion) sample. Theinvariant mass peak for this sample is shown in �gure 6.13.

Figure 6.13: Reonstruted invariant mass distribution, mππ, for the new event se-letion after the usage of the information of dE/dx.
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Chapter 6. Eletron FinderWith these two samples it is now possible to examine the separation power of the ho-sen estimators and further on to train the disriminator using a method of a multivariateanalysis.The signal sample onsists of the deay eletrons of about 80'000 J/ψ vetor mesonswhereas the bakground sample ontains pions from approximately 1'100'000 ρ mesons.6.3 Comparison of Estimators for Signal and BakgroundIn this setion a omparison of the estimators for the eletron and the pion sample ispresented. The estimators are analysed onerning the separation power between thetwo samples. This results give a �rst indiation of the potential of the eletron �nderusing the quantities introdued in setion 6.1.The tests of the estimators are divided into intervals regarding the momentum andthe polar angle of the trak. This allows to study the separation double di�erentiallyin the momentum and the polar angle. The polar angle θ is divided into three intervalsaording to the regions of the alorimeter: entral barrel (CB), forward barrel (FB) andinner forward (IF). This is done by identifying the wheel of the alorimeter ell whihmeasured an energy deposition. The segmentation of the liquid argon alorimeter intowheels is illustrated in �gure 3.4 in setion 3.2.2.As the eletron and the pion samples do not ontain the same number of events, everyhistogram is normalised to the number of eletron events in the orresponding interval.In order to study the separation power of the di�erent estimators in the observed dis-tributions for eletrons and pions the polar angle θ and the transversal momentum pt arereweighted. This reweighting is neessary to exlude e�ets from di�erent distributionsin the kinematial variables.In �gures 6.14 and 6.15 the results of the reweighting for θ and pt are illustrated.
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6.3. Comparison of Estimators for Signal and Bakground

Figure 6.14: Distribution of the polar angle θ in the entral barrel, 1.5 GeV < p <
1.75 GeV. Left: generated, right: reweighted.

Figure 6.15: Distribution of the transversal momentum in the entral barrel,
1.5 GeV < p < 1.75 GeV. Left: generated, right: reweighted.
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Chapter 6. Eletron FinderIn the following the results for the �rst estimator, the ratio of energy to momentum,is presented.Eletrons usually deposit all their energy in the eletromagneti alorimeter leading toa value of Eelmag(alo)
p(trak) ≈ 1. The value for pions is lower as they do not deposit all theenergy in the eletromagneti part of the alorimeter.Figure 6.16 shows the distribution of Eelmag

p for two di�erent radii. The result for theeletrons is shown, as in all the following �gures, in the shaded histogram. The left sideshows that the smaller ylinder (Ri = 15 cm) is too small to fully ontain the hadronishower in lateral diretion. In ase of the wider ylinder (Ro = 30 cm), a higher fra-tion of the hadroni shower is ontained as the number of zero-entries is smaller. Thehosen momentum interval is de�ned by 1.5 GeV < p < 1.75 GeV and the region of thealorimeter is the forward barrel.Figure 6.17 shows the same quantity for eletrons and pions in a di�erent momentuminterval (3.25 GeV < p < 3.5 GeV) and another detetor region (entral barrel). Thismomentum interval is the upper boundary of the examined momentum spetrum in thisthesis, as the statistis of pions originating from ρ deays in higher momentum regimesis too low for a omparison.

Figure 6.16: E/p distribution of eletrons and pions in the forward barrel for twodi�erent ylinder radii, left: Ri = 15 cm, right: Ro = 30 cm. Momentum interval:
1.5 GeV < p < 1.75 GeV.
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6.3. Comparison of Estimators for Signal and Bakground

Figure 6.17: E/p distribution of eletrons and pions in the entral barrel for twodi�erent ylinder radii, left: Ri = 15 cm, right: Ro = 30 cm. Momentum interval:
3.25 GeV < p < 3.5 GeV.The �gures show the already mentioned behaviour of eletrons, that they usually de-posit all their energy in the eletromagneti part of the liquid argon alorimeter. Thepeak around E/p ≈ 1 is learly visible. For higher momentum eletrons, the fration ofeletrons with a value of E/p obviously below 1, is even smaller. This ould be explainedby the smaller fration of energy lost in dead material for higher energeti eletrons.The fration of the deposited energy is in ase of pions de�nitely smaller, as the examinedmomentum interval for pions and eletrons is the same. The peak value of E/p is learlyshifted towards smaller values ompared to the eletrons.Espeially for higher momenta (�gure 6.17) the overlap of the urves is not big. A diretut on this quantity allows a good separation between eletrons and pions. It is possibleto rejet a reasonable amount of pions while most eletrons are kept. Therefore the sep-aration power of the estimator E/p is good.The isolation riterion I = Einner

Eouter is shown in �gure 6.18 for the entral barrel in themomentum interval 2.25 GeV < p < 2.5 GeV.Pions tend to have slightly lower values for I than eletrons due to the wider lateraldistribution of the shower in the alorimeter. But both distributions learly peak at
I = 1. Compared to the result of E/p, the separation is not as pronouned.In ase of Srad, the measure for the shower radius (see �gure 6.19), the separationpower depends on the energy of the partiles. For energies of about 1 GeV Srad lookssimilar for eletrons and pions. For higher energies, about 3 GeV, the measure for theshower radius of pions is shifted towards higher values. For eletrons, the urve does not55



Chapter 6. Eletron Finder

Figure 6.18: I = Einner
Eouter for eletrons and pions in the entral barrel, 2.25 GeV < p <

2.5 GeV.hange signi�antly. In this energy setor the separation is visible.The estimator desribing the longitudinal shower distribution shows a ompletely dif-ferent behaviour between eletrons and pions. As pions usually deposit only a smallfration of their energy in the eletromagneti part of the alorimeter, this depositionis often measured in a single layer. In ontrast to eletrons, pions do not neessarilydeposit their energy at the beginning of the alorimeter. Therefore the signal an bemeasured on any layer. This behaviour leads, aording to the de�nition of the measurefor the shower length, to spikes in the distribution of Slen for pions as an be seen in�gure 6.20. The weighting of the layer by the energy is aneled, whih gives an integernumber for Slen. Both depited distributions are shown for the entral barrel but fordi�erent momentum intervals.
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6.3. Comparison of Estimators for Signal and Bakground

Figure 6.19: Srad for eletrons and pions in the entral barrel, left: 1.0 GeV < p <
1.25 GeV, right: 3.0 GeV < p < 3.25 GeV.

Figure 6.20: Slen for eletrons and pions in the entral barrel, left: 1.0 GeV < p <
1.25 GeV, right: 3.25 GeV < p < 3.5 GeV.
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Chapter 6. Eletron FinderAs the energy of the pions inreases, the trend to build spikes dereases (right handside). For eletrons in ontrast, the deposition starts usually on the �rst layer and ismainly ontained in the �rst two layers. This leads to a narrower peak for Slen of ele-trons. In general the distribution gets wider for higher energeti eletrons. The showndistributions do not ontain values above Slen = 3, as the eletromagneti part of theliquid argon alorimeter onsists of only three layers in the entral and forward barrel.For this estimator a lear separation between eletrons and pions is visible towards highervalues of Slen, espeially for larger momenta.The last two used quantities are the measured energy in the eletromagneti and thehadroni part of the liquid argon alorimeter in a ylinder (Ro = 30 cm) around the se-leted traks for eletrons and pions. The energy-dependene of the separation is shownin �gure 6.21.In ase of the eletromagneti energy, the separation between eletrons and pions dependson the examined energy interval. The separation gets learly better with inreasing en-ergy. The distribution of the deposited energy for pions gets wider for higher energies.But the fration of pions where more than 75 % (approximately rise of the peak for ele-trons with p ≥ 2 GeV) of the energy of the trak is deposited in the eletromagneti partof the alorimeter, is very small.As the amount of deposited energy in ase of eletrons is nearly 100 %, the peakvalueof the measured energy is diretly proportional to the trak momentum. This di�erentbehaviour of eletrons and pions leads to the visible separation for higher momenta.
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6.3. Comparison of Estimators for Signal and Bakground

Figure 6.21: Measured eletromagneti energy of eletrons and pions in a ylinderaround the trak in the entral barrel, top left: 1.0 GeV < p < 1.25 GeV, top right:
1.75 GeV < p < 2.0 GeV, lower left: 2.5 GeV < p < 2.75 GeV, lower right: 3.25 GeV <
p < 3.5 GeV.
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Chapter 6. Eletron FinderThe same behaviour an be observed in the forward barrel of the alorimeter and isdepited in �gure 6.22. The separation is not as good as for the entral barrel, but stillvisible.

Figure 6.22: Measured eletromagneti energy of eletrons and pions in a ylinderaround the trak in the forward barrel, top left: 1.0 GeV < p < 1.25 GeV, top right:
1.75 GeV < p < 2.0 GeV, lower left: 2.5 GeV < p < 2.75 GeV, lower right: 3.25 GeV <
p < 3.5 GeV.The measurement of the deposited energy in the hadroni part of the alorimetershows, that eletrons very rarely reah the hadroni alorimeter in the studied energyregime. Therefore no energy is measured in general.The pions do indeed reah this part of the detetor and deposit a measurable amount of60



6.3. Comparison of Estimators for Signal and Bakgroundenergy in the hadroni ells. This leads to a lear di�erene in the distribution of themeasured energy and is depited in �gures 6.23 and 6.24 for the entral and the forwardbarrel respetively. Two di�erent momentum intervals are shown in eah �gure.

Figure 6.23: Measured hadroni energy of eletrons and pions in a ylinder aroundthe trak in the entral barrel, left: 1.0 GeV < p < 1.25 GeV, right: 3.25 GeV < p <
3.5 GeV.

Figure 6.24: Measured hadroni energy of eletrons and pions in a ylinder aroundthe trak in the forward barrel, left: 1.0 GeV < p < 1.25 GeV, right: 3.25 GeV < p <
3.5 GeV.
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Chapter 6. Eletron Finder6.4 Comparison of Estimators in Data and Monte CarloSimulationIn this setion the desription of the estimators using simulated data is presented. Thesame quantities, disussed in the previous setion 6.3, are studied for Monte Carlo sim-ulation and ompared to the data samples for eletrons and pions. The data seletionriteria desribed in setion 6.2 are also applied to the MC samples.For this work the most relevant part is the energy distribution of eletromagneti andhadroni alorimeter showers, sine dE/dx is not alibrated for 2006/07 and thereforenot usable in Monte Carlo simulation.In order to ompare the resulting distributions for the estimators, a J/ψ Monte Carlosimulation is hosen for the generation of the Monte Carlo signal (eletron) sample. A
ρ Monte Carlo simulation is suitable for the bakground (pion) sample. The available ρMonte Carlo sample did not ontain enough high momentum pions to allow for a mean-ingful omparison to data. Consequently, a sample of inline generated single pions wassimulated. The momentum interval was adapted to inlude enough high momentum pi-ons for a omparison.The generators of Monte Carlo simulation often produe distributions of the kinemativariables whih di�er from the distributions observed in the data, espeially for singlepartile Monte Carlo. To get the best ahievable desription of the atually observeddistributions, the variables of the Monte Carlo events are reweighted to the data. In thisstudy the reweighting is done in the polar angle θ and the transversal momentum pt. Asdesribed in the previous setion 6.3 the distributions of θ and pt for the pion data sampleare reweighted to them of the eletrons. The distributions of the kinemati quantities forthe Monte Carlo samples are as well adapted to those of the eletrons in the data sample.This assures that all the samples have equal distributions of the kinemati quantities.In �gures 6.25 and 6.26 the result of the reweighting for θ and pt is illustrated. As anexample, the entral barrel and the momentum interval 1.5 GeV < p < 1.75 GeV arehosen. The distribution is shown for pions (data and inline generated pions). Sine foreletrons the di�erene between data events and events simulated by DiffVM is notvery pronouned, no reweighting is needed.
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6.4. Comparison of Estimators in Data and Monte Carlo Simulation

Figure 6.25: Distribution of the polar angle θ in the entral barrel, 1.5 GeV < p <
1.75 GeV. Left: generated, right: reweighted.

Figure 6.26: Distribution of the transversal momentum in the entral barrel,
1.5 GeV < p < 1.75 GeV. Left: generated, right: reweighted.
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Chapter 6. Eletron FinderThe �gures of the omparison between data and Monte Carlo are presented and dis-ussed in the following paragraphs.The desription by simulation of the �rst estimator, introdued as the measured ele-tromagneti energy divided by the trak momentum Eelmag
p , is shown in �gures 6.27and 6.28 for two di�erent momentum intervals in the entral barrel of the detetor. The�gure shows on the left hand side the result for eletrons and on the right hand side thatfor pions. The hosen momentum intervals are de�ned by 1.5 GeV < p < 1.75 GeV and

2.5 GeV < p < 2.75 GeV respetively.The desription of signal and bakground is good, as the shapes of the urves are nearlyidential.In the forward barrel the distribution of Eelmag
p is slightly di�erent for data and simu-lation, as an be seen in �gure 6.29 for 2.5 GeV < p < 2.75 GeV. The Monte Carlopredition is, espeially in ase of eletrons, shifted towards higher values of E/p. A pos-sible explanation for this ould be that in the forward barrel of the detetor, the amountof passed dead material is bigger than in the entral barrel. Probably the amount ofdead material inluded in the simulation is too low. Therefore the reonstrution pro-ess alloates a higher energy to the simulated partiles ompared to real partiles. Thelength sale for the energy loss of eletrons is the radiation length, whereas that of pi-ons is the interation length. As the radiation length of eletrons is muh smaller thanthe interation length of pions, the e�et is more pronouned for eletrons than for pions.

Figure 6.27: Comparison of Eelmag
p in a ylinder around the trak with radius R =

30 cm in the entral barrel. The plot on the left side shows the distribution of eletrons,that on the right side that of pions. The hosen momentum interval is 1.5 GeV < p <
1.75 GeV.
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6.4. Comparison of Estimators in Data and Monte Carlo Simulation

Figure 6.28: Comparison of Eelmag
p in a ylinder around the trak with radius R =

30 cm in the entral barrel. The plot on the left side shows the distribution of eletrons,that on the right side that of pions. The hosen momentum interval is 2.5 GeV < p <
2.75 GeV.

Figure 6.29: Comparison of Eelmag
p between data and Monte Carlo in the forwardbarrel for eletrons and pions, 2.5 GeV < p < 2.75 GeV.
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Chapter 6. Eletron FinderThe omparison between simulation and data for I = Einner
Eouter shows a good desriptionas an be seen in �gures 6.30 and 6.31 for two di�erent momentum intervals. The showndetetor region is the entral barrel. The predition for the proportion of the energy inthe smaller ylinder to the energy in the wider ylinder for eletrons and pions is good.The distributions of I = Einner

Eouter for eletrons and pions in the forward barrel is presentedin �gure 6.32. The partiles have a momentum of about p ≈ 2 GeV.

Figure 6.30: Data-MC omparison of I = Einner
Eouter in the entral barrel for eletrons andpions, 1.0 GeV < p < 1.25 GeV.The peak at I = 1 in the data distribution appears also in the simulation and is pro-nouned similarly. The agreement below I = 1 is also very good.Therefore the desription of this estimator by simulation for the eletron and pion sam-ples is orret.
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6.4. Comparison of Estimators in Data and Monte Carlo Simulation

Figure 6.31: Data-MC omparison of I = Einner
Eouter in the entral barrel for eletrons andpions, 3.25 GeV < p < 3.5 GeV.

Figure 6.32: Data-MC omparison of I = Einner
Eouter in the forward barrel for eletronsand pions, 2.25 GeV < p < 2.5 GeV.
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Chapter 6. Eletron FinderThe omparison between data and simulation of the measure for the shower radius isshown in �gure 6.33 for lowest momenta (1.0 GeV < p < 1.25 GeV) eletrons and pions.

Figure 6.33: Comparison of Srad between data and Monte Carlo in the entral barrelfor eletrons and pions, 1.0 GeV < p < 1.25 GeV.The distribution for the eletron data sample is well desribed by the predition of thesimulation. No di�erene in the urve shape is visible. In ase of pions, the agreement isslightly worse.Figure 6.34 shows the omparison between the data distribution and the simulation inthe forward barrel. The depited momentum interval is 2.25 GeV < p < 2.5 GeV.In this region of the alorimeter, Srad is in good agreement with Monte Carlo expe-tation. Therefore this estimator again is well desribed by Monte Carlo simulation.
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6.4. Comparison of Estimators in Data and Monte Carlo Simulation

Figure 6.34: Comparison of Srad between data and Monte Carlo in the forward barrelfor eletrons and pions, 2.25 GeV < p < 2.5 GeV.The measure for the shower length Slen is disussed next. The omparison betweendata and simulation for eletrons and pions is presented in �gure 6.35.The Monte Carlo predition for eletrons is again in good agreement with the data.The shape of the urves show no di�erene. The more omplex struture of the Slen-distribution for pions is not properly desribed. The ourrene of spikes at integer valuesof the estimator, as desribed in setion 6.3, is predited by the Monte Carlo simulation.The data distribution tends to have more entries for higher values of Slen than the sim-ulation. Although the agreement is not as good as for the already presented estimators,the shape of the distribution is similar.The same behaviour is observed in the forward barrel and in other momentum intervals.An example an be seen in �gure 6.36.
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Chapter 6. Eletron Finder

Figure 6.35: Comparison of Slen between data and Monte Carlo in the entral barrelfor eletrons and pions, 1.25 GeV < p < 1.5 GeV.

Figure 6.36: Comparison of Slen between data and Monte Carlo in the entral barrelfor eletrons and pions, 2.25 GeV < p < 2.5 GeV.
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6.4. Comparison of Estimators in Data and Monte Carlo SimulationThe last two disussed quantities are the measured energies in the eletromagneti andhadroni part of the liquid argon alorimeter. As desribed before, the deposited energyin a ylinder of radius R = 30 cm around the prolongation of the trak in the alorimeteris summed up and alloated to the eletromagneti or hadroni part of the alorimeter.The result of the omparison is shown in �gure 6.37.

Figure 6.37: Data-MC omparison of the eletromagneti energy in the entral barrelfor eletrons and pions, 1.0 GeV < p < 1.25 GeV.The agreement between data and Monte Carlo is slightly better for the eletron sam-ple. But in both ases the shape of the histograms are similar and the agreement is goodin general.Figure 6.38 shows a shift between the distributions of data and simulation. This isprobably the same shifting-e�et in the forward barrel as mentioned for the �rst estima-tor Eelmag
p (see �gure 6.29).The data distribution is slightly shifted towards lower values of the estimator. Thereason ould be the worse orretion of dead material in the detetor by Monte Carloompared to the data orretion. This leads to a predition of higher energy values thanmeasured. As the shifting e�et ours for Eelmag

p and Eelmag, this explanation is plausible.Finally the outome of the omparison between data and Monte Carlo for the hadronienergy is presented in �gure 6.39.The desription of the hadroni energy for pions is good in general. The shape of thedistribution is predited very well by the simulation. 71



Chapter 6. Eletron Finder

Figure 6.38: Data-MC omparison of the eletromagneti energy in the forward barrelfor eletrons and pions, 2.5 GeV < p < 2.75 GeV.The agreement between data and Monte Carlo for eletrons is worse than for pions. Thevalues for the hadroni energy in ase of eletrons is lower than for pions and the numberof events for this estimator is low. The energy deposition of eletrons should be fully on-tained in the eletromagneti part of the alorimeter. The raks between the wheels andthe φ-otants in the liquid argon alorimeter are not instrumented (see setion 3.2 for the

Figure 6.39: Data-MC omparison of the hadroni energy in the entral barrel foreletrons and pions, 1.25 GeV < p < 1.5 GeV.
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6.5. Summarylayout of the alorimeter). This allows the eletrons to probably reah the hadroni re-gion of the alorimeter and therefore indue a weak signal whih is seen in this estimator.6.5 SummaryThe omparison between the eletron and pion data samples has shown that the ho-sen estimators exhibit a large separation power and are suitable to distinguish betweeneletrons and pions using alorimeter and traking information. In partiular the separa-tion power of the estimator desribing the ratio of energy to momentum Eelmag
p is evident.The agreement between Monte Carlo simulation and the data allows the use of all thepresented variables in the next hapter where the quality riteria in ontext of a multi-variate analysis will be disussed (hapter 7).
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Chapter 7Multivariate AnalysisThere are 1011 stars in the galaxy. That used tobe a huge number. But it's only a hundred billion.It's less than the national de�it! We used to allthem astronomial numbers. Now we should allthem eonomial numbers.Rihard Feynman
A multivariate analysis (MVA) is based on the statistial priniple of multivariate statis-tis, whih involves simultaneous observation and analysis of more than one statistialvariable. The oation and the dependene struture of the involved quantities are anal-ysed using spei� proedures. A multivariate analysis is suitable, as soon as a deisionrespeting multiple possibly orrelated quantities has to be made. The aim of suh ananalysis is to obtain a lear piture of the system and to allow a reasonable deision,taking orrelations into aount.The onrete use for multivariate analyses in high-energy physis is to extrat the max-imum available information from the available data. This has beome more and moredemanding in order to searh for smaller signals in larger data samples. The omputingpower and its availableness have grown larger in reent years and therefore the deisionguidane by multivariate methods based on mahine learning tehniques has beome animportant onstituent of many studies in partile physis, like Higgs searhes at LEP [19℄or top mass measurement at the Tevatron [20℄.Due to this inreased request the multivariate lassi�ers themselves have been signi�-antly improved and new ways to tune and to ombine lassi�ers have been developed.7.1 Software Toolkit and MethodsThe software environment for the H1 experiment at DESY is based on the analysisframework ROOT [21℄. Sine ROOT version 5.11/06 a toolkit for multivariate analysis75



Chapter 7. Multivariate Analysisis inluded. This framework is new and still in development. It holds a large variety ofmultivariate lassi�ation algorithms and is alled Toolkit for Multivariate Data Analysiswith ROOT (TMVA) [22℄. TMVA is a olletion of di�erent models to build a disrim-inator based on the information of several input variables. The algorithms range fromwell known Likelihood estimators over linear disriminants to more reent lassi�ers.This software pakage overs all the needed steps for a omplete multivariate analysis.This fat and the possible embedding into the given software environment at H1 are thereasons why TMVA is hosen as the toolkit for the multivariate analysis in this thesis.The most important proesses for this work are the training of the hosen disriminator,the testing of disriminator and the evaluation of the proedure.The �rst step of the analysis, after having hosen a multivariate lassi�er (for instaneneural networks or deision trees), is the training of the disriminator. Therefore thedisussed estimators in setions 6.1 and 6.3 are given to the software as input variables.Aording to the algorithm of the lassi�er, the estimators are evaluated using a signaland a bakground sample. For this purpose the seleted data samples, disussed in se-tion 6.2, are used. The disriminator then is trained to distinguish between signal andbakground, in this ase between eletrons and pions, using the information given by theestimators.Conseutively to this mahine learning tehnique the disriminator is tested. This pro-ess again needs pure samples for signal (eletrons) and bakground (pions). Thereforethe used samples are divided into two parts by TMVA, already for the training proess.In this work the partitioning of the events in the samples in training and testing hap-pens randomly. This phase assures the operativeness of the disriminator and allows todetermine its performane.In a last step the result of the trained and tested disriminator is evaluated.TMVA is spei�ally designed to the needs of high-energy physis appliations andtherefore manages the simultaneous training, testing and performane evaluation of allthe inluded lassi�ers with a user-friendly interfae. Moreover the results are visualisedand the toolkit provides an interfae for the appliation of the trained lassi�ers to data.This allows to use the disriminator, adjusted to a given problem, diretly on data sam-ples in the H1 software environment.During the study of the multivariate analysis for this thesis and the work with TMVA,it was possible to ontribute to the improvements of the TMVA toolkit. Beside under-standing better the used software and ontributing to the progress by reporting somebugs, the interesting onversations with the developers of the toolkit brought some moreinsights for this thesis in general.As already mentioned TMVA delivers a multitude of lassi�er methods. For this thesisonly two of them are studied in more details: Multilayer Pereptron (MLP) and BoostedDeision Tree (BDT). These algorithms lead to the best disrimination (see setion 7.2)76



7.1. Software Toolkit and Methodsand their basi priniples are therefore presented in the following setions. For otherlassi�ers just the results are shown.7.1.1 Arti�ial Neural NetworksAn arti�ial neural network [23℄ is a mathematial model or omputational model whihinteronnets arti�ial neurons. The fundamental idea is based on biologial neural net-works. Eah neuron in the network produes a ertain response at a given set of inputsignals. This external signal applied to the input neurons, puts the network in a har-ateristi state that an be measured from the response of the output neurons. Thenetwork struture is build up beause the response of a spei� neuron depends on theoutput of other (onneted) neurons. An arti�ial neural network an be implemented asan adaptive system that hanges its struture based on the proessed information duringthe learning phase. For the appliation of disrimination between signal and bakgroundone an see the arti�ial neural network as a mapping of the input variables (estimators)to a single output neuron, the output variable of the network. The usage of an arti�ialneural network is a non-linear statistial data modeling tool if at least one neuron has anon-linear response to the input signal.Although the spei� neurons are simple proessing elements, the network itself an showa omplex global behaviour determined by the onnetions between the neurons. Duringthe learning proess the strength (weights) of the onnetions in the network are alteredto produe a signal �ow aording to the input of the network.In this work a speial kind of arti�ial neural network is used. The harateristi traitsof this networks are the organisation of the neurons in layers where only onnetions fromone layer to the immediate next one is allowed. This kind of arti�ial neural network isalled multilayer pereptron. This limitation redues the omplexitivity of the networkand �xes its struture. The �rst layer is the input layer and the last one the output layer.All other layers are hidden layers. The alignment of a multilayer pereptron is shownin �gure 7.1. Eah diretional onnetion between the output of one neuron and theinput of another is given an individual weight. The input value of a neuron is alulatedby multiplying the weight of the onnetion with the output value of the previous neuron.For the method of eletron identi�ation using an MLP a single neuron in the outputlayer is required. This resulting value in the output neuron is normalised to a giveninterval, usually [0, 1]. A value of 0 represents a bakground like trak, whereas 1 meansa signal like trak. This ontinuous distribution of the lassi�er allows to ut on a spei�value in order to ahieve a desired identi�ation e�ieny or bakground rejetion.The weights for the input of the neurons are determined during the training phase ofthe multivariate analysis. The most ommon algorithm for adjusting the weights thatoptimise the lassi�ation performane of a neural network is the so-alled bak propaga-tion. The test statistis given at the output of a network with one hidden layer and with77



Chapter 7. Multivariate Analysis

Figure 7.1: Illustration of a multilayer pereptron with one hidden layer and a singleoutput neuron [23℄. x1 - x4 are the input variables to the neurons yji , where j labels thelayer of the network struture. The weights between the neurons are denoted by wjkl.a single output node is determined by
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7.1. Software Toolkit and Methodsand ŷ = 0 for bakground events. The set of the �nally used weights is derived by min-imising the error funtion, using iterative methods starting from a random set of weights.7.1.2 Boosted Deision TreesA deision tree is a speial display format of a multitude of binary deision rules. Itillustrates suessive hierarhial deisions on the input variables in a tree struture. Anexample is shown in �gure 7.2. An input quantity is passed through the tree struturewhere at every branh a yes or no deision is performed. This left/right (yes/no) turno�sare repeated until some stop riterion is reahed. These �nal leaf nodes are lassi�edduring the training as signal (yBDT = 1) or bakground (yBDT = −1) depending on themajority of test events from the signal or bakground sample whih end up in this leaf.In the ideal ase this allows to separate the phase spae of the input variables into regionsof signal and bakground events. In ontrast to ut-based methods the deision tree isable to split the phase spae into a large number of hyperubes, eah of them is assignedto onsist of either signal or bakground events.The assignment of the estimating variables to the branhes is implemented in a mannersuh that at a spei� node the estimator with the best separation power between signaland bakground at this point is inserted. This means that every splitting riterion isbased on a single variable. This assignment is done during the training starting with theroot node. Therefore the deision tree "grows" during the training phase.The last step is the pruning of the deision tree. The tree is ut bak from the bottomup after it has reahed its maximum size. In this proess statistially insigni�ant partsof the tree are removed whih redues omputation time and the overtraining.In this thesis an extension to the presented deision tree is used: a Boosted DeisionTree [23℄. Several deision trees (a forest) are derived from the same sample. The samelassi�er is trained several times using a suessively reweighted training event sample.This trees then are ombined to form a single lassi�er, a boosted deision tree. Thelassi�er is given by a (weighted) majority vote of the individual deision trees. Boost-ing inreases the statistial stability of the lassi�er with respet to �utuations in thetraining sample and typially also improves the separation performane ompared to asingle deision tree.The boosting algorithm used for this analysis alloates every event that is mislassi�edduring the training a higher weight for the training of the following tree, starting withthe original event weights. This boost weight α is derived from the mislassi�ation rate
err of the previous tree,

α =
1 − err

err
.The resulting event lassi�ation for the boosted deision trees is given by 79



Chapter 7. Multivariate Analysis

Figure 7.2: Shemati view of a deision tree. Starting from the root node, a sequeneof binary splits using the disriminating variables xi, xj and xk is performed. Eahsplit uses the variable that at this node gives the best separation between signal andbakground when being ut on. The same variable may thus be used at several nodes,while others might not be used at all. The leaf nodes at the bottom end of the treeare labeled "S" for signal and "B" for bakground depending on the majority of eventsthat end up in the respetive nodes. Adapted from [23℄.
yBDT(~x) =

∑

i∈forest ln (αi) ·hi (~x) ,where the sum is over all individual trees hi(~x) in the forest and ~x being the tuple ofinput variables. Small (large) values for yBDT indiate a bakground-like (signal-like)event, sine an individual tree is enoded for signal and bakground as h(~x) = +1 and
−1 respetively.The output format of the analysis by TMVA allows to inlude the trained disrimina-tor in the software environment H1OO of the H1 experiment. Due to the large trainingsamples the default on�guration for boosted deision trees produes too extensive odeto be diretly implemented into H1OO (about 7 MB of C ode). Therefore the trainingof the boosted deision tree has to be tuned. The disussions with the developers ofTMVA pointed out the neessary options to be optimised. After omprehensive tests theoutput of the training is suitable to be inluded in programs in the H1OO environment.A �rst appliation of this eletron �nder is presented in hapter 8.
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7.2. Results7.2 ResultsIn this setion the results of the multivariate analysis using the TMVA toolkit are pre-sented and disussed. The input variables for the training of the lassi�ers are theestimators introdued in setion 6.1 and 6.3. The training of the disriminators is donetwie: One training is done with the information of dE/dx and one without, as theinformation of dE/dx is not present in Monte Carlo simulations. At the end the resultsof the training using the Monte Carlo samples are shown.As mentioned in setion 6.3 and 6.4 for a proper omparison the kinemati variables ofthe signal and bakground samples have to be adapted. Therefore a reweighting of theestimators for eletrons and pions in the polar angle θ and in the transversal momentum
pt is done. For the training of the disriminators the same samples are used as for theanalysis of the separation power of the di�erent estimators, disussed in setion 6.3 (see�gures 6.14 and 6.15).The following list ontains all the variables that are given to the training of the dis-riminators as input quantities:

• Eelmag(alo)
p(trak) ; Eletromagneti LAr energy divided by the momentum of the trak

• Einner(alo)
Eouter(alo) ; Ratio of the eletromagneti LAr energy in a smaller ylinder and awider ylinder

• Srad =
∑ells √Eell · dist2

Pells √Eell (alo); Measure for the lateral shower distribution
• Slen =

∑ells Layer ·Eell
Pells Eell (alo); Measure for the shower length

• dEdx (trak) (only for the �rst training); Spei� energy loss in the traking hamber
• Eelmag (alo); Eletromagneti energy measured in the LAr alorimeter
• Ehad (alo); Hadroni energy measured in the LAr alorimeter
• θ (trak); Polar angle of the trak
• pt (trak); Transversal momentum of the trak.
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Chapter 7. Multivariate AnalysisThe distributions of the transversal momentum pt for eletrons and pions allow toapply a preseletion ut (pt > 0.5 GeV) sine there are no eletrons in the sample withsuh a low transversal momentum. This preseletion ut is applied before the lassi�ersare trained.Correlations of the EstimatorsThe disrimination power between signal and bakground depends on the quality of theused input variables. The separation power of eah estimator is important but also theorrelations between the spei� estimators have impat on the disrimination. If twoused variables are highly orrelated no additional information an be extrated. There-fore it is not expedient to use both variables. On the other hand if all the variables arenot orrelated to eah other, a simple ut based disrimination an be applied. Thesedependenes an be visualised using the orrelation matrix of the input variables. Ahigh absolute value of a matrix entry means a strong orrelation between the two spei�variables. The orrelation oe�ients are given in perent. The orrelation matries forsignal (eletron) and bakground (pion) are shown in �gures 7.3 and 7.4.

Figure 7.3: Correlation matrix for the estimating variables of the signal (eletron)sample.
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7.2. Results

Figure 7.4: Correlation matrix for the estimating variables of the bakground (pion)sample.
A perfet orrelation matrix of estimators would be diagonal. This means that no vari-able depends on another and all the information given by the estimators an be used tofull apaity. A nearly ideal behaviour with respet to the other variables an be seen forthe spei� energy loss dE/dx. The orrelation oe�ients for this estimator are alwayslow and therefore its information is omplementary to that of the other estimators.There are some o�diagonal elements with signi�antly high orrelation values. It istherefore probable that not muh information would be lost with less variables. In thefollowing some orrelations between spei� variables are disussed. The orrelation be-tween Srad and Slen is expeted as the length of a partile shower is always orrelated toits lateral distribution via the energy. The dependene between Eelmag and Eelmag

p followsdiretly from the de�nition. The same applies for Eelmag and Einner
Eouter . The momentumof an eletron or a pion is always related to the energy of the partile, therefore theorrelation oe�ient for Eelmag and pt is not small.The di�erene between the orrelation matrix for signal and bakground is not big. Al-though one an see some di�erenes. For instane the orrelation between Ehad (Eelmag)and pt is bigger (smaller) for the bakground sample. This is the expeted behaviourfor pions, as the momentum p is orrelated to the total energy (Ehad + Eelmag) and foreletrons Ehad ∼ 0.
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Chapter 7. Multivariate AnalysisTraining with dE/dxThe separation power of the ombined estimators an be rated aording to the trainedlassi�er. The resulting distributions of the disriminators MLP, BDT, Likelihood andRule�t are shown in �gures 7.5 and 7.6.

Figure 7.5: Distributions of the trained disriminators inluding dE/dx in the set ofinput variables. Left: MLP, right: BDT.

Figure 7.6: Distributions of of the trained disriminators inluding dE/dx in the setof input variables. Left: Likelihood, right: RuleFit.Both disriminators in �gure 7.5 give good results, meaning a lear separation betweenthe distribution for signal and bakground events. Notieable is the small overlap of thesignal and the bakground histograms in ase of the BDT and the nonexisting overlap inase of the MLP lassi�er already for rather small values of the disriminator.The disriminator trained by the Likelihood method shows a good separation. The disad-vantage is the probability of misidenti�ation (signal entries at the very left (bakgroundlike) and bakground entries at the right end of the sale (signal like)). The overlap for84



7.2. Resultsthe RuleFit lassi�er is worse but it is possible to get a leaner sample ompared to theLikelihood lassi�er by loosing e�ieny.The performane of the di�erent lassi�ers an be summarised in a plot where thebakground rejetion is plotted versus the signal e�ieny. This is shown in �gure 7.7for �ve methods. In this �gure the disriminators an diretly be ompared to eah other.

Figure 7.7: Bakground rejetion versus signal e�ieny obtained for the variouslassi�ers after evaluating the events from the data samples seleted for testing.The boosted deision tree gives learly the best result for this appliation. The bak-ground rejetion is better than for any other lassi�er independent of the signal e�ieny.It an be used for appliations where the purity is important but also for studies wherethe e�ieny is more fundamental. The disadvantage is the large output and the orre-sponding problems for the further usage of the ode (see end of setion 7.1.2).The bakground rejetion of the multilayer pereptron is ompareable to that of theBDT, exept that it drops steeper towards high e�ienies.The omparison of the urves for the Likelihood and the RuleFit methods shows againthe better bakground rejetion of RuleFit in the region where the e�ieny is belowabout 95 %.In general a high bakground rejetion an be ahieved at a low ost of e�ieny.A more detailed analysis of the disriminating lassi�ers an be made by means of theorresponding ut e�ieny graphs. There the run of the urves for signal and bak-ground e�ieny as well as for the purity is shown. The number of events for signal and85



Chapter 7. Multivariate Analysisbakground is normalised for this �gures. The quantity Q = P · ǫ, where P is the signalpurity and ǫ the signal e�ieny is an indiator for the quality of the ut value on thedisriminator. For the boosted deision tree and the multilayer pereptron the urvesare shown in �gures 7.8 and 7.9. Figure 7.10 shows the ut e�ienies for the Likelihoodand RuleFit methods.

Figure 7.8: Cut e�ieny plot for the BDT lassi�er. The signal and bakgrounde�ienies are shown versus the ut values of the disriminator as well as the signalpurity.These �gures are helpful to selet a working point for a given analysis. They allow tohoose a suitable utting point on the disriminator for the spei� needs. The expetedamount of bakground an be weighed up against the ahievable signal e�ieny.The signal e�ieny and the signal purity urves of the BDT lassi�er show possibleut values for nearly optimal e�ieny or purity. The run of the urve for the quality
Q = P · ǫ shows a maximum value for a single ut value. For the MLP disriminator asteep derease of the bakground e�ieny and a �at distribution of Q is visible. Thisshows that a looser ut on the disriminator dereases the signal e�ieny whithout in-reasing the purity muh.The quality Q of the Likelihood lassi�er shows a �at distribution allowing a low utvalue. Compared to the BDT and MLP methods the quality and the signal purity donot reah the same high values. The RuleFit algorithm shows similar urve shapes om-pared to the BDT lassi�er. This re�ets the similarity of the underlying algorithms.But the e�ieny is lower in general.
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7.2. Results

Figure 7.9: Cut e�ieny plot for the MLP lassi�er. The signal and bakgrounde�ienies are shown versus the ut values of the disriminator as well as the signalpurity.

Figure 7.10: Cut e�ieny plot for the Likelihood (left) and the RuleFit (right)lassi�ers. The signal and bakground e�ienies are shown versus the ut values ofthe disriminator as well as the signal purity.
87



Chapter 7. Multivariate AnalysisTraining without dE/dxThe whole proess of training, testing and performane evaluation is done a seond timefor the same samples. The information about the spei� energy loss dE/dx from theCJC is not given to the training as an input variable. At this time the information ofdE/dx is not present in the Monte Carlo simulations. Therefore without this estimatorone has the opportunity to ompare the results of the multivariate analysis from the datasample with those of the training with the Monte Carlo samples.A seond reason for this step is the fat, that the information of dE/dx has already beenused to selet the data for the training samples. By using the spei� energy loss ofthe partiles a bias might be introdued. A way to avoid this bias would be to train adisriminator without the information of dE/dx on the present data samples. With this�nder one ould selet new samples and then train a new disriminator with dE/dx asan estimator.In the following the results for this training proess are presented. Figures 7.11 and 7.12illustrate the distribution of the trained lassi�ers.The orresponding orrelation oe�ients are idential to them in �gures 7.3 and 7.4resulting from the �rst training using dE/dx.

Figure 7.11: Distributions of the trained disriminators without dE/dx. Left: MLP,right: BDT.
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7.2. Results

Figure 7.12: Distributions of of the trained disriminators without dE/dx. Left:Likelihood, right: RuleFit.Compared to the distributions obtained from the �rst training using the informationof dE/dx, the separation between the signal and bakground histograms is onsiderablyworse. The overlap is in general more pronouned and the probability of misidenti�ationhas inreased. Although with the MLP and the BDT disriminators it is still possibleto get a pure sample, but with learly dereased e�ieny. The advantages of the MLPand BDT methods are more obvious than in ase of the �rst training.The omparison between the performane of the disriminators without the use ofdE/dx is shown in �gure 7.13. The derease in e�ieny and bakground rejetion om-pared to the urves from the �rst training is visible.
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Chapter 7. Multivariate Analysis

Figure 7.13: Bakground rejetion versus signal e�ieny obtained for the variouslassi�ers without the information of dE/dx after evaluating the test samples. Toompare the results with the previous training, the same sale is shown as in �gure 7.7.

Figure 7.14: Unzoomed version of Bakground rejetion versus signal e�ieny ob-tained for the various lassi�ers without the information of dE/dx after evaluating thetest samples.
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7.2. ResultsThe ut e�ieny graphs for the training without the spei� energy loss of a partilein material are shown in �gures 7.15 and 7.16.

Figure 7.15: Cut e�ieny plot for the BDT (left) and the MLP (right) lassi�er. Thesignal and bakground e�ienies are shown versus the ut values of the disriminatoras well as the signal purity.

Figure 7.16: Cut e�ieny plot for the Likelihood (left) and the RuleFit (right)lassi�ers. The signal and bakground e�ienies are shown versus the ut values ofthe disriminator as well as the signal purity.The e�ienies and therefore the quality measure are lower for all disriminators om-pared to the results from the previous training.This omparison of the two di�erent trainings shows the importane of the estimatordesribing the spei� energy loss of partiles in order to get a lear separation betweenthe signal from the eletrons and from the pions.
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Chapter 7. Multivariate AnalysisTraining using the Monte Carlo samplesIn the following paragraphs the outome of the multivariate analysis of the hosen esti-mators using the signal and bakground samples generated by Monte Carlo simulationis given. The spei� energy loss in material an not be used for this training, as dE/dxis not implemented in the available Monte Carlo programs. Therefore the results an beompared to the training disussed before (Training without dE/dx).Figures 7.17 and 7.18 show the orrelation oe�ients of the input variables for thesamples generated by Monte Carlo simulation.

Figure 7.17: Correlation matrix for the estimating variables of the Monte Carlo signal(eletron) sample.
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7.2. Results

Figure 7.18: Correlation matrix for the estimating variables of the Monte Carlo bak-ground (pion) sample.The orrelation oe�ients of the input variables for the training of the simulateddata samples show the same tendenies as an be seen for the data samples (�gures 7.3and 7.4). In general the orrelation oe�ients are slightly higher or nearly equal forthe Monte Carlo samples ompared to the data, exept for the orrelation between thetransversal momentum pt and the eletromagneti energy Eelmag.The resulting distributions of the disriminators MLP and BDT for the Monte Carlosimulated samples are shown in �gure 7.19.
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Chapter 7. Multivariate Analysis

Figure 7.19: Distributions of the trained disriminators for the samples generated byMonte Carlo simulation. Left: MLP, right: BDT.Although the agreement of the estimators between data and Monte Carlo simulationis good (setion 6.4), the result of the multivariate analysis for the MLP and the BDTlassi�er using the Monte Carlo samples di�ers from that of the training using the datasamples.The overlap of the signal and bakground distributions for both lassi�ers is signi�antlyhigher for the Monte Carlo samples ompared to the training using the data samples.The amount of signal like (MLP > 0.5) bakground events for the Monte Carlo samplesis onsiderable. For the data sample no suh events are visible. The distributions of theBDT lassi�er for data and Monte Carlo only di�er signi�antly in the region aroundBDT ≈ 0. The peak in the Monte Carlo distribution is very pronouned ompared tothe data distribution.These di�erenes in the distributions are not understood yet.Figure 7.20 shows the bakground rejetion versus the identi�ation e�ieny resultingfrom the training of the Monte Carlo samples.Although the separation between signal and bakground events in the distribution ofthe trained lassi�ers is worse for Monte Carlo simulation the resulting signal e�ienyand bakground rejetion seems to be better than for the data samples. The run of theurves are omparable but the Monte Carlo urve lies above the data urve.This result is not omprehensible at the moment.The ut e�ieny graphs of the MLP and BDT lassi�ers for the training using theMonte Carlo samples are shown in �gure 7.21.
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7.2. Results

Figure 7.20: Bakground rejetion versus signal e�ieny obtained for the variouslassi�ers trained on the Monte Carlo samples.

Figure 7.21: Cut e�ieny plot for the BDT (left) and the MLP (right) lassi�er. Thesignal and bakground e�ienies are shown versus the ut values of the disriminatoras well as the signal purity.
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Chapter 8First Appliation of the FinderIl n'est pas ertain que tout soit inertain.Blaise Pasal
The intention of this diploma thesis is to develop an algorithm to identify eletrons atlow energy in data measured by the H1 detetor. The identi�ation is based on informa-tion olleted by the traking detetor and the liquid argon alorimeter (see setion 3.2).This information is used to de�ne estimators whih show di�erent distributions for signalor bakground like traks. These variables are evaluated and analysed using data andMonte Carlo samples (hapter 6). A disriminating variable is trained by means of asoftware toolkit (TMVA), whih allows to set a working point for the eletron identi�a-tion aording to the spei� needs for an analysis (hapter 7).In this hapter a �rst appliation of the developed eletron �nder is presented and theresult is ompared to that of another �nder.8.1 Inelasti Prodution of J/ψ Vetor MesonsIn order to test a newly developed eletron �nder a suitable proess to analyse is hosen.An interesting proess for this purpose are inelastially produed J/ψ mesons, where theregime of photo-prodution (low Q2) is hosen. The reasons for this hoie are the learsignal of the peak, the similarity of the proess to the deay b → eX and the fat thatthis proess is hallenging and di�ult.In ontrast to the data seletion for the signal sample this time the inelasti proessis hosen. In the elasti proess two isolated traks are involved whih improves theidenti�ation probability. As the number of traks in an inelasti proess is larger thisappliation is more demanding to a �nder.The identi�ation of the deay eletrons of the inelasti J/ψ mesons is performed fortwo lassi�ers. The methods of boosted deision trees and multilayer pereptrons are97



Chapter 8. First Appliation of the Finderhosen, as they give the best results and have been disussed in more details in this the-sis. These results are followed by those of the KALEP [2℄ �nder as a omparison to theexisting methods of eletron identi�ation. The implementation of this study on inelasti
J/ψ and the �gures presented in the following setions are onstituents of a PhD thesisanalysing B-physis [24℄. This analysis studies the deay hain ep → bb̄X → e+e−X ′ inthe H1 experiment at HERA. The reonstrution of an invariant mass peak mee is a testfor the operational reliability of the eletron identi�ation implemented in this thesis.Another reason for this test is the fat, that the events of J/ψ deays are bakgroundevents in a beauty analysis. This is illustrated for instane in a paper of the ZEUS ollab-oration about the measurement of beauty prodution from dimuon events at HERA [25℄.The invariant mass distribution and the breakdown into the expeted ontributions fromdi�erent proesses is shown in �gure 8.1.

Figure 8.1: Dimuon mass distribution of unlike sign dimuon pairs in separated lowand high mass regions and the breakdown into the expeted ontributions from di�erentproesses [25℄.The following paragraphs show the distributions of the reonstruted invariant mass
mee with di�erent requirements on the disriminator and other used quantities. The useddata was taken during the high energy run in 2007 while the new eletron trigger [1℄ wasative. The trigger and vertex requirements are shown in table 8.1. No further trakquality requirements are applied to the starting sample.8.1.1 Boosted Deision TreeFigure 8.2 shows the distributions of the reonstruted invariant mass for the identi�edeletrons for two di�erent threshold values of the BDT disriminator. The event seletionis done by requiring two leptons.
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8.1. Inelasti Prodution of J/ψ Vetor MesonsTrigger Transversal momentum Number of eletron andidatesS29 pet > 1.5 GeV 1 (single tag)S32 pet > 1.2 GeV 2 (double tag)S34 pet > 2 GeV 1 (single tag)Vertex requirement
|zvertex| < 35 cmTable 8.1: Requirements on the eletron trigger for the study of inelasti J/ψ events.

Figure 8.2: Distributions of the reonstruted invariant mass of inelasti J/ψ mesonsin dilepton events for two threshold values of the BDT lassi�er. Left: BDT > 0.15,right: BDT > 0.3 [24℄.Both distributions of the reonstruted invariant mass show a lear peak above 3 GeVwithout any further requirements on the traks. A threshold value of 0.3 of the BDTlassi�er leads to a redution of the bakground and underlines the peak struture.The seletion riteria for the hosen events are further improved by applying uts ondi�erent quantities, motivated by a preliminary of the H1 ollaboration about inelasti
J/ψ prodution at HERA [26℄ (see also setion 8.1.4). The �rst kinemati variable isthe frational energy of the J/ψ meson. It is de�ned by z = (pψ · p) / (q · p), where pψdenotes the J/ψ-, p the proton- and q the virtual photon four-momentum. The frational
J/ψ energy is bounded by 0.3 < z < 0.9. The transversal momentum squared of the
J/ψ meson p2

t has to be above a threshold of p2
t > 1 GeV2, respetively p∗2t > 1 GeV2for the transversal momentum squared of the J/ψ in the γ∗p enter-of-mass frame. Afurther requirement is that the harges of the two leptons have opposite signs (c1 · c2 < 0).Two more uts are applied in order to improve the peak struture. The used quantitiesdesribe the event properties. The entre of mass energy of the photon-proton system hasto be in the interval 50 < Wγp < 225 GeV and the restrition on the trak multipliity99



Chapter 8. First Appliation of the Finderis done by requiring at least four traks (ntrak ≥ 4).The improvements of these uts an be seen in �gure 8.3.

Figure 8.3: Distribution of the reonstruted invariant mass of inelasti J/ψ mesonsin dilepton events with uts on traking and event information for a threshold valueof 0.15 of the BDT lassi�er: 0.3 < z < 0.9, p2
t > 1 GeV2, p∗2t > 1 GeV2, c1 · c2 < 0,

50 < Wγp < 225 GeV, ntrak ≥ 4 [24℄.The ratio of signal to bakground has improved and the amount of bakground is low.Below mee = 3 GeV a slight radiative tail an be seen. At about mee = 3.6 GeV a smallpeak is visible originating from the deay of ψ′ mesons.The presented preseletion uts in ombination with the trained BDT disriminator showa lear peak of the reonstruted invariant mass for the inelasti J/ψ meson in photo-prodution.8.1.2 Multilayer PereptronThe eletron identi�ation an also be done using another lassi�er. The outome forthe method of multilayer pereptrons is now presented. The approah is the same as forthe boosted deision tree disriminator. The results are shown in the following �gures.The applied preseletion uts are idential to the already presented ones.Figure 8.4 shows the distributions of the reonstruted invariant mass for the MLPdisriminator. Two di�erent uts are applied on the disriminator and the event seletionis done by requiring two leptons.100



8.1. Inelasti Prodution of J/ψ Vetor Mesons

Figure 8.4: Distributions of the reonstruted invariant mass of inelasti J/ψ mesonsin dilepton events for two threshold values of the MLP lassi�er. Left: MLP > 0.75,right: MLP > 0.9 [24℄.For both ut values the peak is weakly visible although the ut values of the disrimi-nator are high. Compared to the BDT lassi�er the result is learly worse.The event seletion is improved by applying the same uts as for the BDT lassi�er.The result for all applied uts is shown in �gure 8.5.This distribution of the reonstruted invariant mass shows a lear peak above 3 GeV.Moreover the peak of the eletrons deriving from the ψ′ deay is slightly visible. Theapplied uts redue the bakground onsiderably and the radiative tail is visible. Thesignal to bakground ratio is learly worse ompared to the result of the BDT lassi�erwith a smaller threshold value.The omparison of �gures 8.3 and 8.5 shows the advantage of the BDT lassi�er andjusti�es its hoie.
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Chapter 8. First Appliation of the Finder

Figure 8.5: Distribution of the reonstruted invariant mass of inelasti J/ψ mesonsin dilepton events with uts on traking and event information for a threshold valueof 0.75 of the MLP lassi�er: 0.3 < z < 0.9, p2
t > 1 GeV2, p∗2t > 1 GeV2, c1 · c2 < 0,

50 < Wγp < 225 GeV, ntrak ≥ 4 [24℄.8.1.3 KALEP FinderIn order to ompare the results of the eletron �nder developed in this thesis to theexisting eletron identi�ation algorithms, the same proedure is done using the KALEP�nder. The applied preseletion uts on the trak and event information are idential.The presented distributions illustrate the di�erent performanes of the hosen methods.Figure 8.6 shows the reonstruted invariant mass distribution for the KALEP �nderrequiring two eletrons of the highest quality.The hosen preseletion requiring two KALEP eletrons of high quality does not reveala peak struture. Further uts are neessary to redue the bakground.In order to ompare the results of the di�erent eletron identi�ation methods thesame uts for the event seletion are applied to the KALEP algorithm as presented forthe BDT and MLP lassi�er in the previous paragraphs. The resulting distribution ofthe reonstruted invariant mass is presented in �gure 8.7.The invariant mass distribution after applying the additional uts shows the peak ofthe J/ψ vetor meson slightly above 3 GeV. The amount of bakground is learly higherompared to the previous lassi�ers.
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8.1. Inelasti Prodution of J/ψ Vetor Mesons

Figure 8.6: Distributions of the reonstruted invariant mass of inelasti J/ψ mesonsin dilepton events for the KALEP �nder. The eletrons are seleted with the highestKALEP quality [24℄.

Figure 8.7: Distribution of the reonstruted invariant mass of inelasti J/ψ mesonsin dilepton events with uts on traking and event information for high quality KALEPeletrons: 0.3 < z < 0.9, p2
t > 1 GeV2, p∗2t > 1 GeV2, c1 · c2 < 0, 50 < Wγp < 225 GeV,

ntrak ≥ 4 [24℄.
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Chapter 8. First Appliation of the FinderReapitulatory one an say that the performane of the eletron identi�ation devel-oped within this thesis is onsiderably higher ompared to the existing eletron �nder.8.1.4 H1 PreliminaryIn springtime of 2007 a H1 preliminary result was released about inelasti eletropro-dution of J/ψ mesons in ep-sattering at HERA [26℄. In this preliminary, beside otherquantities, the reonstruted invariant mass distribution is studied by identifying ele-trons in the regime of deep inelasti sattering (DIS). Therefore this is another possibilityto ompare the performane of the eletron �nder presented in this thesis.The invariant mass distribution of the preliminary is shown in �gure 8.8.
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Figure 8.8: Invariant mass spetrum of two oppositely harged eletrons. All seletionuts are applied: 3.6 < Q2 < 100 GeV2, 0.3 < z < 0.9, 50 < Wγp < 225 GeV, pt,e >
0.8 GeV, p∗t,ψ > 1 GeV. The line shows the result of a �t to signal and bakground.
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Chapter 9Summary and ConlusionsSiene annot solve the ultimate mystery of na-ture. And that is beause, in the last analysis, weourselves are a part of the mystery that we aretrying to solve.Max Plank
An identi�ation method for low energy eletrons at the H1 experiment was developedwithin this thesis. The algorithm of this eletron �nder uses traking and alorimeterinformation.The di�erent properties of eletromagneti and hadroni showers in detetor materialwere employed to de�ne estimating variables with good separation power between signaland bakground. The separation power of the estimators was investigated in measureddata and the desription of these variables by the detetor simulation was ver�ed.In a multivariate analysis the estimators were ombined to train a disriminator on signaland bakground data samples using di�erent lassi�er methods. The performane of theused lassi�ers was analysed and ompared.The resulting eletron �nder was implemented in the software environment of H1 andtested on inelasti J/ψ-events. The resulting eletron identi�ation was ompared toother eletron �nders.The hosen variables desribing the di�erent behaviour of eletrons ompared to pionsin the detetor are in good agreement with the predition of Monte Carlo simulations.Moreover the separation power of the estimators is good and the orrelation oe�ientsare signi�antly high only for a few variables.The results from the multivariate analysis show that boosted deision trees learly arethe best lassi�ers for an eletron �nder using the estimators based on traking andalorimeter information. A very powerful variable for disriminating between eletronsand pions is the spei� energy loss in the traking hamber dE/dx.The studies of deay eletrons of inelastially produed J/ψ vetor mesons and the om-parison to an existing eletron �nder show the inrease in the identi�ation e�ieny105



Chapter 9. Summary and Conlusionsand in the bakground rejetion whih has been ahieved within this thesis.There are however still a few topis to be studied in more detail.Some of the deviations between the distributions of the estimators in data and simulationare not fully understood. The e�ets for di�erent energies and detetor regions ould befurther analysed.The usage of dE/dx for the data seletion of the training samples and as an estimatingvariable as well ould introdue a bias. A possible way to investigate this problem is totrain a disriminator without using dE/dx as an estimator. In a seond step one ouldselet data samples using this disriminator and then train a new disriminator on thesesamples now using the information of dE/dx. This would allow to analyse the impat ofthe dE/dx-estimator on the disriminator used in this thesis.The number of used variables for the training of the disriminators ould be studiedin more detail. The orrelation oe�ients show that the information provided by theestimators is not ompletely omplementary. A redution in the number of used variablesmight redue the omplexity of the training at a low ost of identi�ation e�ieny. Oneof the following estimators is probably redundant: Eelmag
p , θ, pt and Eelmag. Aording tothe presented distributions and the orrelation oe�ients the absene of Eelmag wouldlikely not in�uene the resulting lassi�er muh.Another way to redue the number of variables would be to use the polar angle θ andthe transversal momentum pt only for reweighting and not as an estimator. This wouldallow to respet the kinemati properties without a�eting the training.The number of used alorimeter variables ould be redued by de�ning only one energyvariable E = Ehad

Eelmag+Ehad . This quantity is espeially suitable for a multivariate analysisas the odomain is de�ned by 0 < E < 1, whih improves the performane.The separation power of the spei� variables learly di�ers. The estimator with thesmallest separation power and the highest orrelation to other variables is probably themeasure for the lateral shower distribution Srad. A further study ould show the e�eton the training without this estimator.Beside the study of the used estimators the performane of the implemented eletron�nder ould be disussed in more detail. The identi�ation performane ould be studiedin dependene of the transversal momentum pt and the polar angle θ. It is expeted thatthis would show the impat of the z-raks in the alorimeter (transition between thealorimeter wheels) on the e�ieny. Moreover it would be interesting to know how theidenti�ation performes in the forward region of the detetor, as the forward traker doesnot provide a dE/dx measurement.The lower boundary for the eletron identi�ation in the transversal momentum pt isanother quantity whih ould be determined.The algorithm to identify eletrons implemented within this diploma thesis is beinginluded in a PhD thesis analysing the deay hain ep → bb̄X → e+e−X ′ at the H1106



experiment [24℄.Hopefully this work and the impulses given in this outlook may ontribute to a suessfulldevelopment of the PhD thesis.
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