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Abstract

The H1 detector at HERA provides an opportunity to search for new particles produced in
deep inelastic ep scattering. This thesis presents a search for the pentaquark N 0

s (udsds̄) and
Ξ0

5q(usdsd̄) in the decay channel

X → K0
s Λ0, (1)

K0
s → π+ π−,

Λ0 → p π.

Therefore the invariant mass spectrum minv(K
0
s ,Λ

0) is studied. A resonance at a mass of
(1699 ± 3) MeV with a width consistent with the detector resolution of about 10 MeV was
found. This resonance was analyzed further and it looks like it is consistent with equation 1.



Chapter 1

Introduction

Early evidence that mesons and baryons are made of the same quarks was provided by the
remarkable successes of the constituent quark model, in which static properties and low lying
excitations of both mesons and baryons are described as simple composites of asymptotically
free quasi particles with given effective masses. Although the standard model has been a
very successful theory in the classification of baryons and mesons, the underlying theory
of quantum chromodynamics (QCD) allows a much richer baryon spectrum. For example
there may exist hybrid baryons containing quarks (q) and gluons (G) (qqqG) and multiquark
baryons like dibaryons (qqqqqq) or pentaquarks (qqqqq̄). Jaffe proposed a dibaryon as early
as 1977 [1]. Since then there has been an extensive experimental research for these states,
which has been unsuccessful until 2003.

Last year the LEPS Collaboration at SPring-8 reported the 4.6 σ discovery of a new
resonance, Θ+1, in the reaction

γ12C → C ′K−Θ+ → C ′K−(K+n), (1.1)

with a mass of the Θ+ of 1.54 ± 0.01 GeV and a width of less than 25 MeV [2]. This state
was subsequently confirmed by many other groups like the DIANA Collaboration at ITEP
[3] or the CLAS Collaboration at Jefferson Lab [4]. But there have also been several groups
who have not observed this resonance, like the NA49, BES and HERA-B. Since the Θ+ has
baryon number +1 and strangeness -1 it can not be a qqq state. Its minimal quark content
is uudds̄, manifestly exotic since it is not a qqq or a qq̄ state. This discovery of a pentaquark
is one of the most important events in hadron physics for the past decades. There have
appeared more than two hundred papers in the last year which treat this topic. Its quantum
number, internal structure, decay mechanism and underlying dynamics are under heated
debate. The discovery of a manifestly exotic baryon also provides an opportunity to refine
our understanding of quarks dynamics at low energy, where it is not perturbative.

Soon after the discovery of the Θ+ many groups searched for other pentaquark candidates
predicted by the various models developed in the last year (see chapter 3). Up to autumn
2004 the following states have been observed:

1predicted by Diakonov et al. in 1997 [5], originally denoted Z+
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• The exotic pentaquark Ξ0,−−
3
2

observed by the NA49 Collaboration [6] in the decay mode

Ξπ with a mass of 1862 ± 2 MeV and a width of less than 18 MeV. Its minimal quark
content is dsusd̄ and dsdsū. This state has not yet been confirmed by other groups.

• The heavy pentaquark Θ0
c observed by the H1 Collaboration [7] in the decay mode

D∗p with a mass of 3099 ± 8 MeV and a width of 12 ± 3 MeV. Its minimal quark
content is uuddc̄. This state is also not yet confirmed by other groups. The other large
Collaboration at HERA, Zeus, even measured a null result.

• A candidate for the N 0 pentaquark with minimal quark content dudss̄ was found in
the year 2004 by the STAR Collaboration at RHIC [8] in the decay mode Λ0K0

s . They
observed a narrow peak at 1734 ± 5 MeV with a width consistent with the experimental
resolution of about 6 MeV. This state is also not yet confirmed by other groups.

In this thesis the invariant mass spectrum minv(K
0
s ,Λ

0) will be investigated and a can-
didate for the N 0 pentaquark will be searched. This analysis is inspired by the work of
the STAR collaboration and is build up as follows: The data used for the analysis in this
report was taken by the H1 experiment at HERA at DESY in Hamburg. A description of
the accelerator and the important detector components of the H1 experiment is presented
in Chapter 2. An introduction to the different pentaquark models is presented in chapter 3.
The analysis of the invariant mass spectrum minv(K

0
s ,Λ

0) is presented in chapter 4.
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Chapter 2

The HERA H1 Experiment

The German laboratory DESY1, founded in 1959, is one of the five largest accelerator centers
in the world. The research in particle physics started in 1965 using the DESY accelerator,
which was an electron synchrotron. Four years later they started building the electron-
positron Double Ring Store (DORIS), which first has been used for experiments in the
year 1974. From 1975 to 1978 the 2.3 km long Positron-Electron Tandem Ring Accelerator
(PETRA) was constructed. At this time it was the largest storage ring of its kind in the
world. At PETRA the physicists could observe for the first time the gluons directly. In 1984
construction of the Hadron Electron Ring Accelerator (HERA) was started and eight years
later operation could begin. For the future it is planned to build a 33 km long TeV-Energy
Superconduction Linear Accelerator (TESLA). Today there are about 1400 permanent staff
members working at DESY, including 300 scientists.

2.1 HERA

The Hadron-Electron Ring Accelerator shown in figure 2.1 is a unique facility in the world
where electrons or positrons and protons are accelerated to the highest collision energies
ever attained. This facility has been available for research since 1992. HERA consists of
two storage rings, one for protons with an energy of up to 920 GeV and one for electrons
or positrons of 27.6 GeV. The center of mass energy is 314 GeV. The two beams circulate in
opposite directions in an underground tunnel with a length of 6.3 km.

At two interaction points the electrons and protons are brought to collision. The reaction
products are measured by large detectors, H1 and ZEUS. The characteristics of the particles
detected after such a collision provide access to the structure functions of the proton, of
the pion, and of the diffractive exchange as well as to the parton distributions of real and
virtual photons. Additionally the QCD in jet, particle, photon, and heavy-quark production
and the electro-weak theory is tested. Indeed, HERA is not an ideal machine to find new
particles and new interactions, but nevertheless researches on this topic are and will be made.
Furthermore there are two experiments, which are using only either the electron (HERMES)
or the proton (HERA-B) beam. HERMES is in operation since 1995 and is studying the

1Deutsches Elektronen Synchrotron, located at the city of Hamburg
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nucleon spin. Since 1999 the HERA-B collaboration investigates the heavy quarks. Between
the autumn of 2000 and the summer of 2001, HERA was rebuilt with the aim of quadrupling
the collision rate of its particles.
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Figure 2.1: The hadron electron ring accelerator HERA and the pre-accelerators PETRA
and DESY.

2.2 The H1 Detector

The H1-Detector is a very complex system, designed to detect particles which are created
when high energy electrons and protons collide. A detailed description of the H1 and its
components can be found in [9] [10] [11] [12]. The H1 experiment is located at the HERA
Hall North and has a dimension of 12x10x15 meters and a totally weight of 2’800 tons.
The main interest of research of the H1 collaboration, which consists of about 400 scientists
from 39 institutes of 12 countries throughout the world, is to measure the structure of the
proton, to study the fundamental interactions between particles, and to search for physics
beyond the Standard Model of the elementary particles. The H1 experiment will lead to a
better understanding of the fundamental particles that build up our world and the interaction
between them. In figure 2.2 a systematic representation of the H1 Detector is shown.
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Figure 2.2: The H1 detector with its main components
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The electrons and protons enter the detector through the beam pipe in opposite directions
and collide in the interaction zone of the detector, [1] and [7] in figure 2.2. The new particles
produced through this reaction will be detected in different parts of the detector, so called
sub-detectors. The tracks of charged particles are measured in various wire chambers which
form the central tracking system, consisting of the central jet chambers CJC1 and CJC2 [2],
an inner multi wire proportional chamber (MWPC) CIP, an inner z chamber CIZ, an outer z
chamber COZ, an outer MWPC COP and the central silicon vertex detector CST. The CST
consists of two layers of silicon strips detectors, where the inner layer is built of twelve and
the outer of twenty modules. More information on the CST can be found in [10]. The central
jet chamber is divided into two parts, an inner chamber CJC1 which consists of 24 radial wire
layers and an outer chamber CJC2 which consists of 32 radial wire layers. The information
of this chambers will be the main input of this analysis. The H1 tracking system is shown
schematically in figure 2.3. Points along the track can be measured with an accuracy of 1/10
of a millimeter and in this way the curvature of the track in a magnetic field of 1.2 T [6] and
the azimuthal can be determined. This allows to calculate the momentum of the particles.
Because of the much higher energy of the protons compared with the electrons energy the
main part of the produced particles will be emitted in the direction of the proton beam. This
is taken into account through a forward tracking system, which is located on this side of the
detector where the electrons enter [3]. Furthermore there are three silicon trackers, the central
(CST), backward (BST) and forward (FST)2. With these devices it is possible to determine
the secondary vertices with a high accuracy and the measurement of some track parameters
can also be improved. The electrons are detected in the electromagnetic calorimeter [4], which
determines the energy and the scattering angle of the electrons. Of course there are also a
hadronic calorimeter [5] and a muon chamber [9] to detect these particles. The H1 luminosity
system consists of several scintillator detectors which measure electrons and photons in the
backward region under extremely small angles and is used to determine the luminosity.

2.3 Kinematics of the ep scattering

For the description of the kinematics of the ep collisions the following variables are used3 [39]:

• The Bjorken x variable defined by

x := −1

2
· q · q

q · P
, (2.1)

where q2 = −Q2 = (k− k′)2 is the four momentum transfer from the incoming positron
to the proton and k and k′ are the four momentum vectors of the incoming and the
scattered positron, respectively and P is the four momentum vector of the incoming
proton. The Bjorken x is equal to the fraction of the proton momentum carried by the
struck quark (Parton Model).

2This device was not available for the data taken in 1999 and 2000.
3These variables are also used for the estimation of the cross section in section 4.6.8
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• The lepton inelasticity y defined by

y :=
q · P

k · P
. (2.2)

This variable represents the fraction of the positron momentum carried by the ex-
changed photon in the proton rest frame.

These two variables are related by

Q2 = x · y · s, (2.3)

where s = (P + k)2 is the center of mass energy squared. For the data taken in the years
1999 and 2000 the center of mass energy is 314 GeV.

Figure 2.3: Left: The H1 tracking system in the r-φ view. Shown are the central jet chamber
CJC1 and CJC2 as well as the central silicon tracker CST. The ellipse in the middle represents
the beam pipe. The distance from the middle to the outer shield of the CJC2 is about 93 cm.
Right: Schematic representation of the tracking system in the r-z view.
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Chapter 3

Theoretical models for pentaquarks

Exotics with the quark content of the Θ+ (ududs) have been proposed since the early days of
quantum chromodynamics (QCD) using the MIT bag model [13]. More recently the SU(3)-
flavor antidecuplet (10f )1 representation has emerged as an interesting feature of chiral soliton
models of baryons. As early as 1987 Praszalowicz predicted that the Y=2 isospin member
of the J= 1

2 10f would lie near 1540 MeV [14]. In 1997 Diakonov et al. not only predicted a
Θ+ at about the same mass but also estimated its width at less than 15 MeV [5], see also
[15]. This width estimation was the most important contribution to the discovery of the Θ+

pentaquark.

Since early last year there appeared many theoretical paper trying to interpret these exotic
states. Among them the Jaffe and Wilczek’s (JW) diquark model [16] and the Karliner and
Lipkin’s (KL) [26] diquark-triquark model are the most promising ones. In the following we
will have a closer look on these models and their predictions .

3.1 The Jaffe Wilczek diquark model

Previous attempts show that a single cluster description of the (uudds) system fails because
the color magnetic repulsion between flavor symmetric states prevents from binding. There-
fore quarks with the same flavor have to be separated within the pentaquark. Jaffe and
Wilczek proposed that the PQ’s can be considered as a bound state of an antiquark with
two highly correlated spin zero diquarks where the quarks within one diquark have different
flavors. The four quarks are bound into two spin zero, color antitriplet (3c) and flavor an-
titriplet (3f ) diquarks, see figure 3.1. The diquarks obey Bose statistics, but may experience
a repulsive Pauli blocking interaction at short distances. Since the Pentaquark is in a color
singlet state the two diquarks have to combine to a color triplet 3c in order to build a color
singlet together with the antiquark. Because the triplet’s wave function is the antisymmetric
part of 3c × 3c, the diquark-diquark wave function must be antisymmetric with respect to
its other labels. Considering identical diquark, like the two [ud] diquarks in the Θ+ only
space labels remain and the diquark-diquark wave function must be antisymmetric in space,

110f denotes a multiplet of ten states (pentaquarks) in the flavor space represented by a antidecuplet
representation of SU(3)f , see figure 3.2
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i.e. with negative parity. Combined with the antiquark the resulting q4q system has positive
parity. Unlike diquark pairs like the [ud][sd] diquarks in the N 0

s can be symmetrisized in
flavor and therefore can also have positive parity. Of course the diquark pairs with unlike
quarks can also be antisymmetrisized in flavor. The notation used is:

[q1q2][q3q4]+ =

√
1

2
([q1q2][q3q4] + [q3q4][q1q2]) (3.1)

[q1q2][q3q4]− =

√
1

2
([q1q2][q3q4]− [q3q4][q1q2]) (3.2)

In contrast the uncorrelated quark model, in which all quarks are in a ground state, predicts
negative parity for the pentaquark. Figure 3.1 shows a schematic representation of the Θ+

pentaquark in the JW model. The flavor symmetric and therefore spatially antisymmetric

du

du

3 3 I = 0 s = 0c f

l = 1

s

s = 1/2
3 6 I = 0 s = 0c f

j = 1/2

Figure 3.1: Schematic representation of the Θ+ pentaquark in the Jaffe Wilczek model.

two diquark states form a flavor anti-sextet 6f . These states are:

6f , J
P = 1− : [ud][ud], [ud][us]+, [us][us], [us][ds]+, [ds][ds], [ds][ud]+, (3.3)

see equation 3.1. The diquark pairs where the quarks in each diquark have different flavor,
can also be antisymmetrisized in flavor. These flavor antisymmetric and therefore spatially
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symmetric two diquark states from a flavor triplet 3f . These states are:

3f , J
P = 0+ : [ud][us]−, [us][ds]−, [ds][ud]−, (3.4)

see equation 3.2. These diquark pairs have positive parity and the resulting pentaquark (q4q)
when such a diquark pair is combined with an antiquark has negative parity.

3.1.1 The light pentaquarks in the Jaffe Wilczek diquark model

The states mentioned above can be combined with either a u, d or a s quark. Using the 6f
diquark pairs from equation 3.3 the result is a degenerated SU(3) flavor octet and antide-
cuplet (8f ⊗ 10f ), as shown in figure 3.2. As pointed out in section 3.1 these states have
positive parity. The spatially antisymmetric wave function of the diquark pairs would likely
correspond to angular momentum one. Therefore the angular momentum of the pentaquark
in the correlated diquark picture would be either 1

2 or 3
2 . Jaffe and Wilczek assumed that the

pentaquarks with JP = 3
2

+
are elevated to higher energies where they fall apart quickly and

produce no prominent resonances. For pentaquarks containing strange quarks the SU(3)-
flavor symmetry is broken. It is known from baryon spectroscopy that the [ud] diquark is
more tightly bound than the [us] or the [ds] diquark, see [17]. By exchanging a u or d quark
by a s quark additionally to the mass difference itself there is a contribution α from the
binding energy difference. This contribution can be related to the Σ - Λ mass difference by:

α ≡ 3

4
(MΛ −MΣ) ≈ 60MeV (3.5)

Jaffe and Wilczek proposed a Hamiltonian including SU(3) violation given by:

Hs = M0 + (ns + ns) ·ms + ns · α, (3.6)

where ns and ns are the number of strange and antistrange quarks in the pentaquark, re-
spectively and ms is the contribution from the strange quark mass.

In the following the masses of some 8f ⊗ 10f members are calculated.

• Θ+(ududs): This state fixes M0 + ms ≈ 1540 MeV. The small width of the Θ+ may
be explained by a weak coupling to the K+ n state from which it differs in color and
spin.

• N0(ududd): This is the lightest particle in the 8f ⊗ 10f representation. According
to equation 3.6 the mass of this state is M0. Jaffe and Wilczek proposed to iden-
tify this state with the so called Roper resonance N(1440)P11 (see [33]). This fixes
M0 ≈ 1440 MeV.

• N0
s (udsds): This state has the same quantum numbers like the nucleon but with hidden

strangeness and is therefore heavier than the nucleon and should couple strongly to
strange particles. According to equation 3.6 the mass of this state is:

m(N0
s ) ≈M0 + 2ms + α ≈ 1700MeV. (3.7)
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There is a known candidate for this state, the N(1710)P11. If this assignment proves to
be correct then the N(1710) should couple stronger to N η, K Λ and K Ξ than currently
expected.

• Σ+
s (ususs): In the Jaffe Wilczek picture this is the heaviest member of the 8f ⊗ 10f

representation, m(Σ+
s ) ≈ M0 + 3ms + 2α ≈ 1850MeV . This state should couple

predominately to Σ η and ΞK.

• Ξ−−(dsdsu): The isospin 3
2 multiplets contains two Ξ’s with ordinary charge assign-

ments (0,-) and additionally it includes the two exotic states Ξ+,−−. The mass is
estimated to approximately 1760 MeV which is about 100 MeV below the mass found
by the NA49 collaboration2 [6].

N 0 (ududu)

Y

+

+
s

+  

+

0 +

I 3

Ξ Ξ Ξ Ξ

Σ
Σ

N
N (ududd)

(uduss)

(ususd)(dsusd)(dsusu)(dsdsu)

Θ+(ududs)

−

(udusd)
(ususs)s

N 0
s (udsds)

− −

Figure 3.2: Representation of the degenerated flavor octet and antidecuplet (8f ⊗ 10f ). The
axis are the hypercharge Y and the third component of the isospin vector I3. The N0

s for
example has Y = 1 and I3 = −1

2 .

Combining the 3f diquark pairs from equation 3.4 with either a u, d or a s quark the
result is a nonet of pentaquarks with negative parity and flavor content 1f ⊗ 8f . But these
states have non exotic quantum numbers and are not considered further in the thesis.

2The decay channel examined by the NA49 collaboration is Ξ(baryon)π
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The correlated diquark picture differs in several ways from the prediction of the chiral
soliton model. The main differences are:

• In the chiral soliton model the Θ+ is the lightest pentaquark and therefore there is no
candidate for the Roper resonance.

• In the correlated diquark picture the Σs is the heaviest member of the 8f ⊗ 10f repre-
sentation, whereas the Ξ is the heaviest pentaquark in the chiral soliton model. The
mass hierarchy of these two models is shown in figure 3.3.

• In the chiral soliton model there is only a SU(3)-flavor antidecuplet and no octet.

Soliton

Θ

N

N

Σ

Σ

Ξ

Σ

N

Θ

Ξ

s

s

mass [arbitrary units]

J−W

Figure 3.3: The mass hierarchy in the in the Jaffe Wilczek diquark model and in the chiral
soliton model.

3.1.2 The heavy pentaquarks in the Jaffe Wilczek diquark model

The antiquark from a light pentaquark can be substituted by a heavy antiquark (c or b) to
form a heavy pentaquark. The heavy quarks are in a SU(3)-flavor singlet. They form a SU(3)-
flavor antisextet (6f ) with even parity when combined with the diquark pairs (symmetric in
flavor, antisymmetric in space) listed in equation 3.3. Combining a heavy antiquark with the
diquark pairs from equation 3.4 (antisymmetric in flavor, symmetric in space) they from a
SU(3)-flavor triplet (3f ) with odd parity, see [18] and [19]. These states are schematically
shown in figure 3.4. The flavor wave function of the heavy pentaquarks are listed in table 3.1 3.
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+Σ 5c
0 ([ud][us] c)Σ −

5c ([ud][ds] c)+

Σ −
5c

Ξ −
5c +([ds][us] c)Ξ −5c([ds][us] c)−’Ξ− −

5c([ds][ds] c)+

Θ 0
c([ud][ud] c)+

([ud][us] c)−Σ’0
5c([ud][ds] c)−

’

Ξ 0
5c([us][us] c)+

Figure 3.4: The flavor triplet (3f : Σ′ 0,−5c and Ξ′ −5c , shown by open circles) and antisextet

(6f : Θ0
c ,Σ

0,−
5c and Ξ0,−,−−

5c , shown by solid dots) of charmed pentaquarks. The triplet consists
of three antisymmetric diquark pairs [q1q2][q3q4]−, while the diquark pairs [q1q2][q3q4]+ belong
to the flavor symmetric antisextet, see also [20]

6f -states Flavor wave function 3f -states Flavor wave function

Θ0
c ,Θ

+
b [ud][ud]q

Σ0
5c,Σ

+
5b [ud][us]+q Σ′05c,Σ

′+
5b [ud][us]−q

Σ−5c,Σ
0
5b [ud][ds]+q Σ′−5c ,Σ

′0
5b [ud][ds]−q

Ξ0
5c,Ξ

+
5b [us][us]q

Ξ−5c,Ξ
0
5b [us][ds]+q Ξ′−5c ,Ξ

′0
5b [us][ds]−q

Ξ−−5c ,Ξ
−
5b [ds][ds]q

Table 3.1: The flavor wave functions of the heavy pentaquarks in the Jaffe Wilczek model,
where q = c or b and [q1q2][q3q4]± is defined in equation 3.1 and 3.2.

The Θ0
c differs from the Θ+ by the replacement of the antiquark s → c. The mass

difference arising from this exchange can be related to the Λ(1116) and Λc(2285) masses,
because the [ud] diquark in the Λ is coupled to color 3c and spin zero and so provides an
environment for the s quark nearly identical to the environment of the s in the Θ+. Jaffe
and Wilczek estimated the mass of the Θ0

c by:

m(Θ0
c) ≈ m(Θ+) +m(Λc)−m(Λ) ≈ 2710MeV 4, (3.8)

3Stewart [21] uses an other notation for the 3f -states: Σ′0,−5c = T 0,−
s and Ξ′−5c = T−ss for the charmed PQ

and Σ′+,05b = R+,0
s and Ξ′05b = R0

ss for the beauty PQ
4The chiral soliton model yields a mass of m(Θ0

c) ≈ 2704 MeV [22] and a quenched lattice QCD calculation
implies m(Θ0

c) = 2977 ±109 MeV [23]
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which is about 100 MeV below threshold for the strong decay Θ0
c → pD−. Likewise they

estimated:

m(Θ+
b ) ≈ m(Θ+) +m(Λb)−m(Λ) ≈ 6050MeV, (3.9)

which is about 165 MeV below threshold for the strong decay Θ+
b → pB0. At first sight the

controversy about the mass of the Θ0
c should be settled down with the recent observation

by the H1 group of a narrow resonance in the D∗− p and D∗+ p invariant mass spectrum
at 3099 MeV [7]. But as pointed out in [24] it is possible that the H1 state Θ0

c(3099) is an
excited state of a yet undiscovered ground state Θ0

c(2700) with opposite parity. Therefore it
is important to measure the parity of the Θ0

c(3099). If this state has negative parity this may
imply the existence of a charmed pentaquark with positive parity and a mass below the D N
threshold. On the other hand if the H1 state Θ0

c(3099) proves to be a truly groundstate this
would have an important impact on the Jaffe and Wilczek model. In that case the diquarks
should not be treated as a point like particle and there are significant attractive hyperfine
interactions between the antiquark and the other four quarks of the pentaquark [25].

Assuming that the Θ0
c(3099) is not a groundstate Cheng et al. [18] followed the argu-

mentation of Jaffe and Wilczek to estimate the masses of the other flavor antisextet (6f )
members. Their results are listed in table 3.2.

6f -states Mass in the J-W model

Θ0
c 2710MeV

Σ0,−
5c 2860MeV

Ξ0,−,−−
5c 3014MeV

Θ+
b 6050MeV

Σ+,0
5b 6199MeV

Ξ+,0,−
5b 6351MeV

Table 3.2: The estimated mass of the 6f states in the J-W model

Stewart et al. [21] estimated the masses of the 3f members within the Jaffe and Wilczek
model. As mentioned above it is expected that these states have negative parity and that
they are in the 3f representation of SU(3)-flavor. Therefore there is no P-wave expected
between the two diquarks. The masses can be estimated as follows:

m(Ts
5) ≈ m(Θ0

c) + ∆s − UP , (3.10)

where ∆s is the mass difference arising when a u or d quark is exchanged by a s quark and
UP is the excitation energy associated with the P-wave. These terms can be estimated by
∆s ≈ m(Ξc) − m(Λc) ≈ 184MeV or ∆s ≈ m(Λ) − m(p) ≈ 177MeV and UP ≈ m(Λ′c) −
m(Λc) ≈ 310MeV , where Λ′c denotes the excitation of the Λc with (ud) in a P-wave relative
to c. The mass of the Tss can be estimated by m(Tss) ≈ m(Ts) + ∆s. In a similar way the
masses of Rs and Rss have been estimated. The resulting masses are listed in table 3.3. These
mass estimations are well below threshold for the strong decays and therefore it is likely that

5Ts = Σ′05c
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3f -states Mass in the J-W model

Σ′0,−5c = T 0,−
s 2580MeV

Ξ′−5c = T−ss 2770MeV

Σ′+,05b = R+,0
s 5920MeV

Ξ′05b = R0
ss 6100MeV

Table 3.3: The estimated mass of the 3f states in the J-W model

the 3f states decay weakly. For the Ts pentaquarks that would be c→ s d u. Possible decay
modes are [21]:

Σ′05c = T 0
s → Λ0K0

s , p π
−, p φ π−,Λ0 K+ π−,K0

s K
− p

Σ′−5c = T−s → Λ0K0
s π
−, p π− π−, p φ π− π−,Λ0 K+ π− π− (3.11)

Ξ′−5c = T−ss → Λ0 π−,Ξ−K0
s ,Λ

0 K0
s K

−,K− p π−

Since this thesis is studying the invariant mass spectrum minv(K
0
s ,Λ

0) the decay T 0
s → Λ0 K0

s

could may also be observed.

3.2 The Karliner Lipkin diquark-triquark model

As mentioned in section 3.1 quarks with the same flavor have to be separated. Therefore
a single cluster model for the description of the pentaquarks is not adequate and Karliner
and Lipkin (KL) [26] proposed that the system is divided into two color non singlet clusters
which separates the quarks of identical flavor. The two clusters are a diquark (for example
a ud for the Θ+) and a triquark (for example a uds for the Θ+), see figure 3.5. In the KL
model these clusters are separated by a distance larger than the range of the color magnetic
force and are kept together by the color electric force, so that the color hyperfine interaction
operates only within but not between the clusters. The diquark has the same configuration
as in the JW model, namely they are in a color antitriplet state (3c) and in flavor antitriplet
state (3f ) and has isospin I = 0 and spin S = 0. The two quarks q1 q2 in the triquark (q1 q2Q)
are in a color sextet (6c) of SU(3)c representation and in a flavor antitriplet (3f ) of SU(3)f
representation and have I = 0 and S = 1. The state of these two quarks is symmetric in spin
as well as in color. The triquark is in a flavor antisextet representation of SU(3)f and in
a color triplet representation of SU(3)c so that the pentaquark builds a color singlet state.
The triquark has I = 0 and S = 1

2 . The KL model predicts a flavor antidecuplet and a flavor
octet, because 3f ⊗ 6f = 8f ⊕ 10f . This is in agreement with the JW model. However, unlike
the JW model Karliner and Lipkin assume a P-wave between the diquark and the triquark6.

6To get a picture of the KL model (for the Θ+) consider a K+ and a neutron which are far enough apart
so that they don’t ’feel’ each other. Then move a d quark from the neutron over to the kaon and recouple the
color and spin of the ’K+’ to optimize the hyperfine interaction. Moving a quark from point r1 to r2 requires
an energy in the potential of the neutron of V(r2) - V(r1), where V is the confining potential (for example
Coulomb + linear). The energy is in the color electric field that has been generated between r1 and r2. The
tradeoff between the hyperfine and the confining interaction reproduces the mass of the pentaquark, see [28].
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u d

3c 3f s = 0I = 0

I = 0 s = 1/2c f63

6 3 I = 0 s = 1c f

j = 1/2

l = 1

s = −1/2

s

u d

Figure 3.5: Schematic representation of the Θ+ pentaquark in the Karliner Lipkin model.

Karliner and Lipkin used a SU(6) spin-color algebra (introduced by Jaffe [27]) for the
description of the hyperfine interaction between two quarks i and j:

Vhyp = −V (~λi · ~λj)(~σi · ~σj), (3.12)

where ~λ and ~σ denote the generators of SU(3)c and the spin operators (Pauli matrices),
respectively and V is a constant greater than zero. This hyperfine interaction is attractive
for states that are symmetric in color and spin where ~λi · ~λj and ~σi · ~σj have the same sign
and repulsive in antisymmetric states where they have opposite signs. This is why the quarks
within one diquark have to have different flavors: Pauli principle forces two identical fermions
at short distance to be in a state that is antisymmetric in spin and color where the hyperfine
interaction from equation 3.12 is repulsive. Therefore the hyperfine interaction between two
quarks of the same flavor is always repulsive.

For the heavy pentaquarks the KL model predicts a flavor triplet and a flavor antisextet,
like the JW model. Due to the fact that KL assume a P-wave between the two clusters
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(diquark-triquark) this model predicts a positive parity (P = +1) for both, the flavor triplet
and antisextet states. This is in contrast to the JW model where P(3f ) = -1. Measuring
the parity of the flavor triplet heavy pentaquarks can thus discriminate between the JW
model and the KL model. But until autumn 2004 no pentaquark from the flavor triplet was
observed.

3.2.1 Mass estimation in the Karliner Lipkin model

Estimating the mass of the Θ+ KL used the SU(6) spin-color algebra. It can be shown that the
hyperfine interaction for the diquark-triquark system is stronger by 1

6 · (m∆−mN) ≈ 50 MeV
than for the kaon-nucleon system, where m∆ = 1232 MeV is the mass of the ∆ resonance
and mN is the mass of the nucleon. Therefore the diquark-triquark system is tighter bound
than the kaon-nucleon system. The diquark triquark system has a color electric interaction
between the two clusters which is identical to the quark antiquark interaction in mesons.
Neglecting the finite size of the diquark and the triquark this system can be compared with
analogous mesons. KL considered the Ds meson whose reduced mass mred is similar to that
one of the diquark triquark system in the Θ+:

mred(cs) =
mc ·ms

mc +ms
= 410MeV ≈ mred(di− tri) =

mdi ·mtri

mdi +mtri
= 458MeV, (3.13)

where mu = 360 MeV, ms = 540 MeV, mc = 1710 MeV, mdi = 720 MeV and mtri = 1260 MeV
were taken. Furthermore it has been proposed that the Ds(2317) meson is a JP = 0+

excited state of the ground state Ds(1969)[29]. This implies an excitation energy of 350 MeV
consisting of contributions from a P-wave (δP−wave) and from color hyperfine splitting. KL
estimated the color hyperfine splitting based on the mass difference of the D∗s and Ds mesons.
They obtained:

δP−wave ≈ 350MeV − (mD∗s −mDs) = 207MeV. (3.14)

This yields a Θ+ mass of:

m(Θ+) ≈ m(N) +m(K0
s )− 1

6
· (m∆ −mN ) + δP−wave = 1592MeV, (3.15)

which is about 3 % above the observed mass. This is not really surprising since the equality
in equation 3.13 is not exactly true.

The mass of the Θ0
c has also been estimated within the KL model. The main difference

to the estimation above is the mass of the antiquark c, which breaks the SU(3) symmetry.
KL estimated the mass of the Θ0

c without the P-wave excitation (m0(Θ0
c)) to [28]:

m0(Θ0
c) ≈ m(N) +m(D)− 1

12
(1 + ζc) · (m(∆)−m(N)) ≈ 2778MeV, (3.16)

where ζc = mu
mc

= 0.21 describes the symmetry breaking. They obtained:

m(Θ0
c) ≈ 2778MeV + 207MeV = 2985MeV. (3.17)

KL estimated the uncertainty to be approximately 50 MeV:

m(Θ0
c) = (2985 ± 50)MeV. (3.18)
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This estimation is clearly above the mass predicted by the JW model, but is more or less
compatible with the mass measured by the H1 collaboration. Again we see the urgent need
to determine whether the state found by H1 is a groundstate or not.



22 Theoretical models for pentaquarks



Chapter 4

Data Analysis

4.1 Overview

The goal of this analysis is to find a Pentaquark (PQ) in the decay channel K 0
sΛ0, PQ →

K0
sΛ0. This analysis is using the data taken in the years 1999 and 2000 by the H1 collaboration

at HERA. The integrated luminosity of this data set is L = 64 pb−1.

4.1.1 Analysis structure

The Pentaquark is expected to have a very short lifetime and so decays inside the beam pipe.
For that reason this resonance can only be found through their decay products. The decay
channel chosen for this analysis is ispired by the work of the STAR collaboration [8]:

X → K0
sΛ0 (4.1)

K0
s → π+π− (4.2)

Λ0 → π p (4.3)

The decay channel contains conjugate charge configuration as well and is schematically shown
in figure 4.1. An other advantage of this decay channel is its distinct kinematic structure. The
K0
s and the Λ0 can not been measured directly but also through their decay products. The

branching ratio of equation 4.2 is BR(K0
s → π+π−) = (68.60 ± 0.27) % and the branching

ratio of equation 4.3 is BR(Λ0 → π p) = (63.9 ± 0.5) %.

This analysis is build up as follows:

• Establish a list of well measured tracks. This is done using a routine written by Dr. W.
Erdmann (h1tsel) which provides two list of tracks; one with tracks of positive charge
and one with tracks of negative charge, see section 4.2.

• Reconstruct K0
s decay according to equation 4.2. Therefore a positive and a negative

charged track are fitted together under the assumption that both tracks are pions and
that the kaon is coming from the interaction point (see figure 4.1). The fit is done using
a two dimensional fitter procedure (2DC) with pointing constraint, which means that
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IP

V2

V1

pion

pion

proton

pion

lambda

kaon

Figure 4.1: Schematically representation of the decay analyzed in this thesis. IP denotes the
interaction point where the electron and the proton collied (also called primary vertex) and
V1 and V2 the secondary vertices where the kaon and the lambda decays, respectively.

the pion momentum vectors are manipulated within the errors so that the reconstructed
kaon momentum vector points towards the interaction point. Then the invariant mass
minv(π

+, π−) is calculated and kinematic selection criteria are applied to extract clean
kaon candidates. The invariant mass spectrum without any selection criteria is shown
in figure 4.2. Since not all particles in the track list are pions wrong combinations occur
which results in the combinatorial background. Especially if a proton is interpreted as
a pion the Λ0 decay is reconstructed. These steps are performed in section 4.4.

• Reconstruct Λ0 decay according to equation 4.3. Once a K0
s is reconstructed a loop over

the tracks which are not used for the kaon reconstruction is performed. This makes sure
that the decay particles from the kaon are not the same than those from the lambda.
Again a positive charged track and a negative charged track are fitted together with the
2DC fitting procedure but this time under the assumption that the track with the higher
momentum is a proton or a antiproton 1 (according to their charge) and the other a
pion. Then the invariant mass minv(p, π) is calculated and kinematic selection criteria
are applied to extract clean lambda candidates. The invariant mass spectrum without
any selection criteria is shown in figure 4.2. Of course also here wrong combinations
occur. These steps are performed in section 4.5.

• Select events containing at least one kaon as well as one lambda and fit these neutral
particles to the interaction point (see figure 4.1). The fit is done using the VVF fitting
procedure, see section 4.6.1. Again the invariant mass minv(K

0
s ,Λ

0) of the kaon and
the lambda is calculated and kinematic selection criteria are applied. These steps are
performed in section 4.6.

All these steps will be carried out using a FORTRAN code which provides a ntuple. A ntuple
is like a n×m matrix where each row stands for one event or one hypothesis and each column

1This is true because of the large mass difference of the decay particles in equation 4.3, see chapter 4.5.2
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contains the values of a chosen variable. The ntuple will then been analyzed using the PAW
(physical analysis workstation) program.
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Figure 4.2: The invariant mass distribution minv(π
+, π−) and minv(p, π) of the kaon and

the lambda candidates, respectively without any selection criteria except the track selection
introduced in section 4.2

4.2 track selection

As already mentioned in section 4.1.1 first of all a list of well measured tracks has to be
established. The input parameters for the track selection function (h1tsel) are:

• The bank name. In this analysis the CSKR bank is used which contains CJC-CST
fitted tracks (see point three below).

• Minimal number of CST hits. This parameter is set to zero because of two reasons. On
the one hand this allows to compare the kaons whose decaying pions left CST hits with
those who have only CJC hits, see section 4.4.1. On the other hand the number of CST
hits have to be set to zero because of the long lifetime of the lambdas (cτΛ0 ≈ 7.9 cm)

• The minimal χ2 probability of the CST-CJC fit is set to zero because tracks without
CST hits are allowed. The CJC-CST fit is described in figure 4.3. The tracks are first
reconstructed in the CJC (dashed line in figure 4.3 with parametrization T) and are
then extrapolated into the CST region. All CST hits within 5 σ are associated with
the tracks. Then the tracks are refitted using the information of the CST hits, which
results in a new parametrization T’ of the tracks.

• Primary vertex. This logical quantity is set false because the kaon and the lambda
don’t decay at the interaction point but at a secondary vertex.

• Minimal number of CJC1 hits. It was found empirically that 9 is a good value for this
quantity.
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• The maximal starting radius of the tracks is set to 35 cm.

• The minimal track length is set to 12 cm.

• The maximal dca (distance of closest approach) is set to 100 cm. This is no restriction
because all tracks are fullfilling this criteria, see figure 4.4. The dca is the minimal
distance between the track and the origin of the H1 coordinate system in the r-φ plane.

• The minimal transverse momentum of the tracks is set to 100 MeV because tracks with
a lower transverse momentum have a bad accuracy of measurement.

The track selection variables are shown in figure 4.4. Only a subset of about 150’000 events
from the year 1999 is used.

CJC

CST
h2

5 sigma

CJC track with parametrisation T

h1

h3

CJC−CST fitted track
with parametrisation T’

Figure 4.3: Schematically representation of the CJC-CST fitting. The dashed line shows the
reconstructed CJC track with parametrization T . The CST hits are denoted as h1, h2 and
h3 and T’ is the parametrization of the CJC-CST fitted track.

Furthermore it is demanded that the error of the dca (one sigma) is less than dca
2 . All

tracks fullfilling this criteria are taken for the further analysis. Out of the 84 million events
recorded in the years 1999 and 2000 there were about 19.5 million events containing at least
two positive charged and two negative charged tracks which fulfil the track selection criteria.

4.3 The Armenteros plot

The Armenteros plot describes the kinematic of a two body decay

M0 → D−D+, (4.4)

where M 0 denotes the neutral mother particle and D+ and D− the two charged daughter
particles2. This plot is used later in this thesis, see section 4.4.3 and 4.5.2. The Armenteros
plot is a generic two dimensional plot for decay kinematics of two body decays, M 0 →
D−D+, in the variables pT (D−) and α, where pT (D−) = p(D−)sin(Θ(D−)) is the transverse

2The Armenteros plot exists for all two body decay, independent of the charge assignment.
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Figure 4.4: The variables used for the track selection. The line shows the selection criteria
for the corresponding variable.
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z

Figure 4.5: Two body decay in the rest frame of the mother particle.

momentum of the negative charged daughter particle with respect to the flight direction of
the mother particle M 0 and α is defined by

α =
p(D+)cos(Θ(D+)) − p(D−)cos(Θ(D−))

p(D+)cos(Θ(D+)) + p(D−)cos(Θ(D−))
=
pL(D+) − pL(D−)

pL(D+) + pL(D−)
, (4.5)

where pL(D±) denotes the longitudinal momentum and Θ(D±) the azimuthal angle of the
positive or negative charged daughter particle, respectively. The maximal values of these two
variables can be calculated by looking at the decay in equation 4.4 in the rest frame of the
mother particle. In this frame the angle between the two daughter particles is 180 ◦, see figure
4.5. The x axis is chosen to be the direction of the D− momentum vector and the z axis is
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the direction of the boost used later in this section. Four momentum conservation implies:




m(M0)

~0


 =




√
m2(D+) + ~p 2(D+)

~p(D+)


+




√
m2(D−) + ~p 2(D−)

~p(D−)




=




√
m2(D+) + p 2

x(D+)
px(D

+)
0
0


+




√
m2(D−) + p 2

x(D−)
px(D−)

0
0




=⇒ m(M0) =
√
m2(D+) + (−px(D−))2 +

√
m2(D−) + p 2

x(D−), (4.6)

where px(D−) denotes the x component of the D− momentum vector and m(D±) the mass of
the positive and negative charged daughter particles, respectively. The maximal transverse
momentum is achieved when the boost direction is perpendicular to the daughters momentum
vector, see figure 4.5. Since the vectors perpendicular to the boost direction are not influenced
by the boost, the maximal transverse momentum is

pmaxT (D−) = p′x(D−) = px(D
−) =

√(
m(M0)2 +m(D−)2 −m(D+)2

2m(M0)

)2

−m(D−)2, (4.7)

where p′x(D
−) denotes the x component of the momentum vector of the daughter particle

D− in the laboratory frame. To calculate the corresponding value of the variable α the
z component of the D− and D+ momentum vector in the laboratory frame are needed.
According to the special relativity theory it is true that

p′z(D
±) = β · (pzD±)− β · γ ·E(D±) = −β · γ · E(D±), (4.8)

where β = v
c and γ = 1√

1−( v
c

)2
and v is the boost velocity and c is the speed of light and

E(D±) is the energy of the daughter particles in the rest frame (see for example [32]). It
follows that

α ≡ pL(D+) − pL(D−)

pL(D+) + pL(D−)
=
E(D+)−E(D−)

E(D+) +E(D−)
, (4.9)

where E(D±) =
√
px(D±) +m(D±).

4.4 K0
s reconstruction

In a next step every track of positive charge is combined with every track of negative charge
under the hypothesis that both tracks are caused by pions. These tracks are fitted to a
common secondary vertex in order to reconstruct the kaon decay

K0
s → π+π−. (4.10)
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In case of a successful vertex fit (with χ2 less than three) the invariant mass of the two tracks
is calculated according to the equation

minv(track1, track2) =
√

(Etrack1 +Etrack2)2 − (~ptrack1 + ~ptrack2)2, (4.11)

where ~ptracki is the momentum vector of track i and Etracki =
√
~p 2
tracki +m2

π is the energy of

track i (i=1,2). Since the track list contains also other particles than pions, wrong combina-
tions occur. These wrong combinations will be reduced by the vertex fit where tracks without
corresponding partner fall out. But also after the fit there will be some wrong combinations
which make up the combinatorial background, see for example figure 4.6. Above all one has
to make sure that no lambdas are interpreted as kaons, since Λ0 → π p, see section 4.4.3.

4.4.1 Vertex fitting

For this analysis the sv package - a package for secondary vertex fit - [30] is used. This
package provides different kinematic fitting procedures, which combine a chosen number of
tracks and calculate the best hypothesis for their common origin, the secondary vertex. The
fitter used in this analysis are the 2DC and the CSHY procedures. Actual CSHY is a bank
containing different hypotheses for the z-hits assignments of the CST hits to the CJC track.
Although the underlying fitters are ’general purpose’, sv is essentially geared towards fitting
with the CST. Nevertheless the sv package can also been used for tracks without CST hits.
This package also provides tools to extract the relevant quantities from the fitters output,
like the decay-length or the invariant mass. All the quantities supported by the sv package
as well as all available fitter procedures are listed in [30].

The 2DC procedure is a 2 dimensional fitter with pointing constraint for charged tracks,
written by J.Gassner. This fitter does not demand any CST hits and hence is less restrictive
than the CSHY procedure. That’s the reason why all hypotheses are first fitted with this
procedure. In a second step all hypothesis where the 2DC fit was successful are fitted again
with the CSHY procedure.

The CSHY procedure combine vertex-fitting and pattern-recognition for the CST by
trying different CST hit assignments for the z coordinate. The best assignment is picked
based on the sum of track and vertex χ2. The vertex fit is done with VFIT3DU, which is a
3 dimensional, unconstraint fitter for charged tracks. The linking of CST-hits to CJC-tracks
has its problems, especially for the z-coordinate, see [30]. The CSHY procedure handles the
z-linking problem by multiple z-linking hypotheses stored in the CSHY bank. The underlying
idea is that the vertex fit can help to find the right CST hit assignment, because wrong hit
assignments tend to result in a bad vertex-fit quality. That’s why the sum of the χ2 of track
fit plus the vertex-fit is minimized. Note that two r−φ hits and at least one z-hit per track are
always required and no pointing constraint is demanded. That is the most striking difference
to the 2DC procedure.

In this analysis about 76% of the kaon candidates found by the 2DC procedure could be fit-
ted with the CSHY procedure. Figure 4.6 shows the invariant mass distribution minv(π

+, π−)
of the kaon candidates for different fitting procedures. In the first place all candidates (π+, π−)
where the 2DC fitting procedure was successful are shown. Then all candidates passing the
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Figure 4.6: Mass spectrumminv(π
+, π−) of theK0

s candidates. No cuts but the track selection
are applied. Overlaid on the histograms are resulting curves from a fit describing the signal as
a Gaussian function and the background as a quadratic polynomial. S/N denotes the signal
to noise ratio within 2σ of the Gaussian function.

CSHY fitting procedure are shown and at last all candidates which don’t pass the CSHY
fitting procedure but the 2DC procedure are shown. Overlaid on the three histograms in
figure 4.6 are resulting curves from a fit describing the signal as a Gaussian function and the
background as a quadratic polynomial. For this plot no kaon cuts are applied apart from the
track selection criteria introduced in section 4.2. It is obvious that the performance of the
CSHY fitting procedure is better than those of the 2DC procedure. The signal to noise ratio
shown in Figure 4.6 is calculated by counting the entries within 2σ 3 from the mean value.
The obtained value represents the signal plus noise. For the noise calculation the quadratic
background function obtained from the fit is used. Alternatively the error function could be
used to determine the signal.

In Figure 4.7 the χ2 distribution and the probability function for the two different fitting
procedures are shown. The probability function is defined as:

prob(χ2, n) =
1√

2nΓ(n2 )

∫ ∞

χ
e−

t
2 · t 1

2
(n−1)dt, (4.12)

3The σ is those obtained from the Gaussian function describing the signal
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Figure 4.7: The χ2 distribution and probability function of the 2DC and the CSHY fitting
procedures.

where n denotes the number of freedom of the fit and is in this case equal to one (see [30]).
For a good fit the probability function should be flat. Actually there would be a rising edge
towards zero due to wrong combinations. This edge doesn’t appear in figure 4.7 because
a cut on the fit χ2 was applied in the program which can be translated into a cut on the
probability function by equation 4.12.

4.4.2 The K0
s -cuts in detail

In a next step the signal to noise ratio of the kaon candidates will be enhanced by applying
different selection criteria on the kaon variables. The selection criteria used are partly inspired
by the diploma thesis of T. Zimmermann, see [31]. By trying different values for the variables
listed below the signal to noise ratio could be maximized in consideration of not losing too
much signal. All quantities are determined by the CSHY procedure. This includes a cut on
the number of CST hits, see section 4.4.1. The signal to noise ratio could be enhanced from
2.42 to 7.05, see figure 4.13.

• pT(K0
s ): The transverse momentum of the kaon is demanded to be larger than 200 MeV.

This cut was introduced to achieve a better precision of the measured tracks and the
kinematic variables.
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• prob(χ2,1): The probability of the fit should be larger than 0.1 because of the rising
edge towards zero which is due to wrong combinations.

• sin(pointing angle): The pointing angle is the angle between the reconstructed kaon
momentum vector and the line connecting the primary vertex with the secondary vertex.
This quantity is zero for kaons originating from the primary vertex. But because of the
finite resolution of the measured tracks it can not be demanded that this angle is zero.
Empirically it was found that sin(pointing angle) ≤ 0.3 is a good restriction.

• cos(helicity angle): The helicity angle is the angle between the kaon momentum
vector and the pion momentum vector, boosted to the rest frame of the kaon. Since
the kaon is a spin zero particle this angle should be uniformly distributed. But the
hypotheses making up the background do not belong to kaons. For these candidates
there is no kaon rest frame and so the boost direction is randomly what effectuate
that the helicity angle is not necessarily uniformly distributed. The cut chosen for this
quantity is | cos(helicity angle) | ≤ 0.85.

• η(K0
s ): The pseudo rapidity defined by η = −ln(tan( θ2)) is used to set a constraint on

the azimuthal angle of the particle. Particles with an azimuthal angle near 0 ◦ or 180 ◦

can not been measured because of the acceptance geometry of the CJC and the CST,
see section 2.2. The visible range in this analysis is restricted to | η | ≤ 1.

• impact parameter: The impact parameter (ip) is the minimal distance between the
track and the interaction point in the r-φ plane. This quantity is used to reject pions
coming from the primary vertex. Since the kaon has a mean lifetime of cτ ' 2.7 cm it
is demanded that both pions have an impact parameter greater than 0.1 cm.

• decay length: The decay length (l) measures the distance between the interaction
point and the secondary vertex in the r-φ plane, see figure 4.1. For the decay length of
the kaons a significance Sl = l

σl
of four is requested, i.e. Sl ≥ 4 , whereat σl denotes the

error of the decay length. Furthermore it is demanded that the decay length is larger
than 0.4 cm and the error is less than 0.5 cm.

The effect of each single cut on the kaon mass spectrum is shown in figure 4.8. Although
each cut has only a small impact on the mass spectrum, they are quite strong when combined.
Applying cuts one is always on the horns of a dilemma. On the one hand as much background
as possible should be rejected and on the other hand as much signal as possible should be
kept. All cuts listed above provide together a signal to noise ratio of about 7. By strengthen
the kaon cuts and especially the track selection cuts introduced in section 4.2 this ratio could
be enhanced to approximately 18, but then a lot of signal would be lost.
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Figure 4.8: The left column shows the K0
s -cut variables. The hatched area is rejected by the

selection cuts. The middle column represents the K 0
s invariant mass spectrum minv(π

+, π−)
without cuts where the kaon reconstruction was done with the CSHY fitting procedure.
The right column shows the impact of the cut on the invariant mass spectrum. On the
histograms in the last two column the resulting curve from a fit describing the signal as a
Gaussian function and the background as a quadratic polynomial is overlaid. S/N denotes
the signal to noise ratio within 2σ of the Gaussian function.
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Figure 4.9: The left column shows the K0
s -cut variables. The hatched area is rejected by the

selection cuts. The middle column represents the K 0
s invariant mass spectrum minv(π

+, π−)
without cuts where the kaon reconstruction was done with the CSHY fitting procedure.
The right column shows the impact of the cut on the invariant mass spectrum. On the
histograms in the last two column the resulting curve from a fit describing the signal as a
Gaussian function and the background as a quadratic polynomial is overlaid. S/N denotes
the signal to noise ratio within 2σ of the Gaussian function.
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4.4.3 Lambda rejection

As already mentioned in section 4.1.1 there is the risk that Λ0’s are interpreted as K0
s , since

Λ0 → p π−

Λ0 → p π+ (4.13)

To reject the lambdas among the kaon candidates, the same tracks as for the kaon are fitted
again with the hypothesis that the track with the higher momentum belongs to a proton or
antiproton and the other to a pion. If this fit delivers a mass within 6 MeV around the nominal
lambda mass then this hypothesis will be rejected. About 5.6 % of all kaon hypotheses have
been rejected. The effect of the lambda rejection can be seen in figure 4.10.
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Figure 4.10: The impact of the Lambda rejection on the Kaon mass spectrum

An other way to distinguish K0
s ’s and Λ0’s is to study the kinematics of the decay. The

decay kinematics differs because the decay particles in equation 4.13 have a quite large mass
difference while the kaon decay is symmetric. These properties can been shown graphically
in the Armenteros plot introduced in section 4.3. Figure 4.11 shows this plot for the kaon
candidates. For a better representation only a small subset of 25’000 randomly chosen events
is used. For the first plot no cuts are applied. A bold big semicircle appears with a maximal
transverse momentum of p−T ≈ 210 MeV at α = 0. Since these values are in agreement with
equation 4.7 and 4.9, when M 0 = K0

s and D± = π± it follows that the semicircle appearing
in figure 4.11 represents the kaons. For the second plot in figure 4.11 a cut on the invariant
mass is applied, minv(π

+, π−) ∈ [0.74GeV, 0.80GeV ]. The resulting semicircle represents
the decay ρ → π+ π−. The maximal transverse momentum is 360 MeV in accordance with
equation 4.7 whenm(M 0) is exchanged by m(ρ0). Of course these particles doesn’t contribute
to the kaon mass spectrum because of their larger mass compared to the kaons. For the plot
on the bottom left of figure 4.11 the lambda rejection cut is applied. One sees clearly that two
small semicircles with pmaxT ' 100MeV are cut away. This semicircle belongs to the decay
Λ → p π, see section 4.4.3. Finally the picture on the bottom right shows the Armenteros
plot when all kaon cuts are applied. The semicircle from the first plot representing the kaons
survives these cuts but there is also some background passing the kaon cuts.
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Armenteros plot

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1 -0.5 0 0.5 1
No cuts α

p T

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1 -0.5 0 0.5 1
0.74 < minv < 0.8 α

p T

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0 0.5 1
Λ-rejection α

p T

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0 0.5 1
All Kaon cuts α

p T

Figure 4.11: The Armenteros plot for the kaon candidates. For explanation see text.

4.4.4 Lifetime of K0
s

In the following a lifetime calculation is carried out. For this purpose specially hard cuts for
the kaon candidates are used. Above all the requirement on the pointing angle was strengthen
to |sin(pointing angle)| ≤ 0.1 to make sure that the kaons are really coming from the primary
vertex. The lifetime is related to the decay length by the formula

l = β · γ · c · τ0, (4.14)
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where β = v
c , γ = 1√

1−( v
c
)2

and c is the speed of light. Furthermore it is valid that β ·γ = p
m·c ,

where p is the momentum and m the mass of the particle. Since the decay length provided by
the sv package is the distance between the primary and the secondary vertex in the r-φ plane
only K0

s candidates with very low longitudinal momentum, i.e. traveling in the transverse
plane, were used. Furthermore only the region with c · τ0 ≥ 1 cm is used because kaons with
a lifetime less than one are strongly influenced by the demand Sl = l

σl
≥ 4 and l ≥ 0.4 cm.

The Figure 4.12 shows the calculated lifetime including an exponential fit. The fit function
used is exp(a+ b · x).
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Figure 4.12: The lifetime of the K0
s candidates. Overlaid on the histogram is the resulting

curve from an exponential fit.

Only the parameter b (in Figure 4.12 denoted as ’slope’) is of interest, as b = −1
c·τ0 . The

value and error from the fit are:

c · τ0 = (2.63 ± 0.02) cm (4.15)

No error propagation is carried out, so the error quoted above is purely statistical. This value
is in agreement with the lifetime published by the PDG [33] of 2.6786 cm, which is a strong
hint that the selected kaon candidates are true K 0

s .
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4.4.5 Kaon fit

The kaon mass spectrum when all cuts are applied is shown in figure 4.13. The signal to
noise ratio within two sigma could be enhanced from 2.42 to 7.05. As already mentioned
this ratio could be driven to even higher values but then a lot of statistics will be lost. On
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Figure 4.13: The kaon mass spectrum with and without cuts. Overlaid on the histograms
are the resulting curves from a fit describing the signal as a superposition of two Gaussian
functions and the background as a quadratic polynomial. S/N denotes the signal to noise
ratio within 2 σ of the Gaussian function and K denotes the number K 0

s
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the histograms in figure 4.13 the curves from a fit describing the signal as a superposition of
two Gaussian functions 4 and the background as a quadratic polynomial are overlaid. The
second Gaussian function was introduced to get a better description of the tails. After the
track selection there were about 1.27 million K 0

s and after the kaon cuts about 0.91 million
K0
s . The resulting mass and width of the kaon are:

m(K0
s ) = (496.60 ± 0.10)MeV

σ(K0
s ) = (5.44 ± 0.03)MeV

(4.16)

Compared with the PDG value of m(K0
s ) = (497.673 ± 0.031)MeV [33] it is not perfect but

quite acceptable.

4.5 Λ0 reconstruction

The next step is to reconstruct the Λ0 decay

Λ0 → p π− or Λ̄0 → p̄ π+. (4.17)

This is done by looping over all tracks which are not used for the kaon reconstruction. This
makes sure that the pion in the K0

s decay is not the same pion as in the Λ0 decay. Combining a
positive charged track with a negative track one has principally two possibilities according to
equation 4.17. But because of the large mass difference of the decay particles the proton has
always a higher momentum than the pion (at least for | ~p |& 100 MeV). So the fit hypothesis
for the lambda reconstruction is that the track with the higher momentum is a proton or a
antiproton and the other a pion. Of course also here wrong combinations occur. In contrast
to the kaon reconstruction no CST hits are demanded because of the longer lifetime of the
lambda’s, cτ ≈ 7.89 cm. So the fitter used is the two dimensional constraint fitting procedure
2DC, see section 4.4.1. In figure 4.14 the χ2 distribution and the probability function of this
fit are shown. The number of freedom used for the probability function is equal to one, see
[30].

In contrast to the fit probability of the kaon fit a rising edge towards zero turns up, because
the cut on the fit χ2 was weakened to χ2 ≤ 5 (for the kaon fit the condition was χ2(K0

s ) ≤ 3).
This rising edge is due to wrong combinations and will be cut away, see section 4.5.1. Nev-
ertheless the probability function is reasonably flat distributed for prob(χ2, 1) & 10 % what
shows that the vertex fit worked well.

4.5.1 Λ0-cuts in detail

This section describes how the signal to noise ratio of the lambda candidates is enhanced
by applying different cuts on the lambda variables. Of course the same dilemma arises as
in the kaon selection, namely that as much background as possible should be rejected while
as much signal as possible should be kept. The variables used are listed below. The effect

4The Gaussian function is given by G(µ, σ) = k
σ
· exp− (x−µ)2

2σ2 , where µ denotes the mean value and k is a
real constant.
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Figure 4.14: The χ2 distribution and probability function of the 2DC fitting procedure for
the Λ0-reconstruction. The number of freedom used for the probability function is equal to
one.

of each single cut on the lambda mass spectrum is shown in figure 4.15 and 4.16. Although
each cut has only a small impact on the mass spectrum (apart from the pT -cut), they are
quite strong when combined. All cuts combined provide a signal to noise ratio of about 2.7.

• pT(Λ0): The transverse momentum of the lambda is demanded to be greater than
800 MeV. This cut strongly rejects background but also some signal is lost, see figure
4.15.

• prob(χ2,1): The probability of the vertex fit is required to be greater than 0.15 because
of the rising edge towards zero, which is due to wrong combinations. The number of
freedom used for the probability function is equal to one.

• η(Λ0): The pseudo rapidity constraints the azimuthal angle of the particle to | η(Λ0) |
≤ 1.

• impact parameter: The impact parameter (ip), defined in section 4.4.2, is used to
reject particles originating at the primary vertex. Since the lambda has a mean lifetime
of cτ ' 7.89 cm it is demanded that both particles (proton and pion) have an impact
parameter greater than 0.15 cm.

• decay length: For the decay length (l) of the lambda a significance of four is requested,
i.e. Sl = l

σl
≥ 4 ,whereat σl is the error of the decay length. Furthermore it is demanded

that the decay length is larger than 0.75 cm and the error is less than 0.5 cm
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Figure 4.15: The left column shows the Λ0-cut variables. The hatched area is rejected by
the selection cuts. The middle column represents the Λ0 mass spectrum without cuts apart
from pT ≥ 0.8 GeV and the right one shows the impact of the cut on the mass spectrum. On
the histograms in the last two column the resulting curve from a fit describing the signal as
a Gaussian function and the background as a quadratic polynomial is overlaid. S/N denotes
the signal to noise ratio within 2σ of the Gaussian function.
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Figure 4.16: The left column shows the Λ0-cut variables. The hatched area is rejected by
the selection cuts. The middle column represents the Λ0 mass spectrum without cuts apart
from pT ≥ 0.8 GeV and the right one shows the impact of the cut on the mass spectrum. On
the histograms in the last two column the resulting curve from a fit describing the signal as
a Gaussian function and the background as a quadratic polynomial is overlaid. S/N denotes
the signal to noise ratio within 2σ of the Gaussian function.
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4.5.2 Kaon rejection

As mentioned in section 4.4.3 there is the risk to interpret Λ0’s as K0
s . Of course the same

is true for the lambda reconstruction. Here the risk is that a pion is interpreted as a proton
and the kaon decay is reconstructed according to equation 4.10. To reject the kaons among
the lambda candidates, the same tracks as for the lambda are fitted again with the kaon
hypothesis. If this fit delivers a mass within 10 MeV around the nominal kaon mass then
this hypothesis is rejected. In this analysis about 11.7 % of all lambda hypotheses have been
rejected. The effect of the kaon rejection is shown in figure 4.17.
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Figure 4.17: The impact of the kaon rejection on the lambda mass spectrum.

In figure 4.19 the Armenteros plot (see section 4.3) for the lambda candidates is shown.
For better visibility only a small subset of 25’000 randomly chosen events is used. For the
first plot shown in figure 4.19 no cuts are applied. The second plot shows the impact of the
kaon rejection. A big bold semicircle with pmaxT ∼ 0.2 GeV at α = 0 representing the kaons
(see section 4.4.3) is cut away. The picture on the bottom left shows the Armenteros plot
when all lambda cuts are applied. Two small warped semicircles representing the decays
Λ0 → p π− and Λ̄0 → p̄ π+ appear in figure 4.19. The maximal transverse momentum and
the corresponding value of the variable α can be calculated with the method presented in
section 4.3. The result for the lambda kinematics is:

m(Λ0) =
√
p2
x,p +m2

p +
√

(−p2
x,p) +m2

π =⇒ pmaxT = p′x,p = px,p = 0.104GeV, (4.18)

where mp and mπ are the proton and the pion mass, respectively and px,p is the momentum
of the proton in the x direction in the rest frame and p′x,p in the laboratory frame. The
variable α can be calculated according to equation 4.9:

α(Λ0 → p π−) =

√
p2
x,p +m2

p −
√
p2
x,π− +m2

π−√
p2
x,p +m2

p +
√
p2
x,π− +m2

π−

α(Λ̄0 → p̄ π+) = −α(Λ0 → p π−) (4.19)

The value of α, corresponding to the maximal transverse momentum, is achieved when
px,p = −px,π− = 0.104 GeV:

α(Λ0 → p π−, pmaxT ) = 0.69

α(Λ̄0 → p̄ π+, pmaxT ) = − 0.69. (4.20)
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The expected Armenteros plot for the lambda kinematics is sketched in figure 4.18. The
plot on the bottom left of figure 4.19 is in agreement with the values calculated above. The
Armenteros plot also provides an opportunity to verify the statement that the track with
the higher momentum is a proton or a antiproton. The variable npro appearing in figure
4.19 is equal to one if the positive charged track has a higher momentum than the negative
charged track. Therefore if npro is demanded to be one only one semicircle should survive
representing the decay Λ0 → p π− . This fact is confirmed in the last plot of figure 4.19.

0.1

p
T[GeV]

α− max αmax
α0

Figure 4.18: A sketch of the Armenteros plot for the lambda kinematics.
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Armenteros plot
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Figure 4.19: The Armenteros plot for the lambda candidates in the pT − α plane, where pT
is the transverse momentum of the negative charged decay particle with respect to the flight
direction of the mother particle and α is defined in equation 4.5. The variable npro appearing
in the last plot is equal to one if the positive charged track has a higher momentum than the
negative charged track. Otherwise it is set to zero. For further explanation see text.
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4.5.3 Lifetime of Λ0

In the following a lifetime calculation for the lambda candidates is carried out. The fit
function is the same as the one used for the kaon, see section 4.4.4. The result is displayed
in figure 4.20.
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Figure 4.20: The lifetime of the Λ0 candidates

Only the parameter b (in Figure 4.20 denoted as ’slope’) is of interest, as b = −1
c·τ0 . The

value and error from the fit are:

c · τ0 = (7.6 ± 0.4) cm (4.21)

No error propagation is carried out, so the error quoted above is purely statistical. This value
is in agreement with the lifetime published by the PDG [33] of 7.89 cm, which is a strong hint
that the selected lambda candidates are true Λ0.

4.5.4 Lambda fit

The figure 4.21 shows the lambda mass spectrum minv(p, π) after all selection cuts. The
signal to noise ratio could be enhanced from 0.7 to 2.7.

On the histograms in figure 4.21 the curves from a fit describing the signal as a superpo-
sition of two Gaussian functions and the background as a quadratic polynomial are overlaid.
The second Gaussian function was introduced to get a better description of the tails. After
the track selection there were about 233’000 Λ0 and after the lambda cuts about 142’000 Λ0.
The resulting mass and width of the lambda is:

m(Λ0) = (1115.9 ± 0.2)MeV
σ(Λ0) = (2.16 ± 0.03)MeV,

(4.22)

where the errors are only statistical. Compared with the PDG value of
m(Λ) = (1115.683 ± 0.006)MeV [33] quite acceptable.
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Figure 4.21: The lambda mass spectrum with and without cuts. Overlaid on the histograms
are the resulting curves from a fit describing the signal as a superposition of two Gaussian
functions and the background as a quadratic polynomial. S/N denotes the signal to noise
ratio within 2 σ of the Gaussian function and L denotes the number Λ0

.
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4.6 Reconstruction of the resonance X

In this section the resonance X will be reconstructed according to the decay

X → K0
s Λ0 (4.23)

and the charge conjugated channel. Every kaon candidate with | minv(π
+, π−) − mK0

s
|≤

30MeV is combined with every lambda candidate with | minv(p, π) −mΛ0 |≤ 20MeV and
a vertex fit of these neutral particles is carried out. This vertex fit differs from the vertex fits
introduced in section 4.4.15 since the kaon and the lambda are neutral particles which can
not be seen directly in the detector, see section 4.6.1. After a successful vertex fit all relevant
quantities will be calculated.

4.6.1 VVF fitting procedure

In this section the track and vertex reconstruction of neutral particles using the Kalman filter
technique [35] is described [34]. The fit of neutral particles to their common origin (vertex)
is more difficult than for charged particles, since neutral particles are not visible in the
detectors tracking system. Therefore the kinematics of the neutral particles are calculated
from previous fits what leads to larger uncertainties. Since tracks from neutral particles
are straight lines the curvature κ used for the track parametrization of charged particles is
replaced by the absolute value of the momentum of the particle. An advantage of the Kalman
filter technique compared to the standard least square method is the processing time. In the
least square method all tracks from one event are fitted to their common origin in one single
step. Therefore the dimension of the matrices used for the fit are proportional to the number
of measured tracks. On the other hand the Kalman filter technique uses the information of
each single track about the vertex consecutively. Therefore the dimension of the matrices
used is limited to five. The advantage in the processing time was not important in this
analysis since only two neutral tracks are fitted together. The Kalman filter techniques is
implemented in the VVF fitting routine [30] used in this section.

In figure 4.22 the χ2 distribution and the probability function for all pentaquark candi-
dates in the data of 1999 and 2000 where the VVF fitting procedure was successful is shown.
The rising edge towards zero appearing in the probability function is due to wrong combi-
nations and will be cut away later, see section 4.6.3. The anomaly in the last bin is caused
by hypotheses with a very low χ2 value (less than 0.001 but not zero) and are of technical
nature. Nevertheless the probability function is reasonably flat distributed for prob(χ2, 1) &
5 % what shows that the VVF fitting procedure worked well.

4.6.2 Monte Carlo simulation

In order to determine the mass resolution of the H1 detector for the resonance X a Monte
Carlo simulation for the decay studied in this analysis has been generated. The simulated data
have also been used to optimize the selection criteria for the kaon and lambda candidates
and to debug the FORTRAN code used to generate the ntuple, see section 4.1.1. Since

5They can handle only charged particles
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Figure 4.22: The χ2 distribution and probability function of the VVF fitting procedure for the
reconstruction of the resonance X. The number of freedom used for the probability function
is equal to one.

nobody knows how the pentaquark decays the simulation uses a neutral particle with a mass
of 1700 MeV decaying in a lambda and a kaon in its rest frame according to phase space only.
The decay particle are then boosted arbitrarily in one direction. There are three different
Monte Carlo sets containing 10’000 events with different values for the boost. These values
are β = 0.3, β = 0.5 and β = 0.6 and result in an average transverse momentum of 0.8 GeV,
1.7 GeV and 2.75 GeV. This allows to study the resolution in dependence on the transverse
momentum. The figure 4.23 shows the reconstructed resonance X → Λ0K0

s for the three
values mentioned above. For the invariant mass spectrum minv(K

0
s ,Λ

0) shown in figure 4.23
all kaon and lambda cuts introduced in section 4.4.2 and 4.5.1 are applied. In addition it is
demanded that the invariant mass of the kaon and the lambda candidates are within ∼ 3σ
of the nominal kaon and lambda mass, respectively:

| minv(π
+, π−)−mK0

s
|≤ 15MeV

| minv(p, π)−mΛ0 |≤ 7MeV.

The resolution of the detector for the resonance X studied in this thesis is listed in table 4.1
(see also figure 4.23). The error of the width σ is approximately 2 MeV. The best resolution

pT [GeV ] 0.8 1.7 2.75

σ[MeV ] 6.4 9.8 8.7

Table 4.1: The resolution for the resonance X in dependence of the transverse momentum.

is achieved for small transverse momentum. This can be explained by the fact that a particle
with a small transverse momentum has a large curvature κ in the magnetic field and therefore
can be measured with a higher precision compared to those particles with a larger transverse
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Figure 4.23: The first row shows the transverse momentum of the reconstructed particle
X from the Monte Carlo simulation. The second row shows the invariant mass spectrum
minv(K

0
s ,Λ

0) from the reconstructed resonance X in dependence of the transverse momentum
pT . Overlaid on these histograms are resulting curves from a fit describing the signal as
a Gaussian function (parameters P1 to P3) and the background as quadratic polynomial
(parameters P4 to P6). For this plot all kaon and lambda cuts are applied and it is demanded
that | minv(π

+, π−)−mK0
s
| ≤ 15MeV and | minv(p, π)−mΛ0 | ≤ 7MeV .

momentum. On the other hand particles with a small momentum experience more multiple
scattering. But since the values for the width listed in table 4.1 agree within the errors no
conclusion about these two effects can be made.
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4.6.3 The invariant mass spectrum minv(K0
s ,Λ

0)

In this section the results from the vertex fit of the kaon and lambda candidates using the VVF
fitting procedure are presented. Every kaon candidate with | minv(π

+, π−)−mK0
s
|≤ 30MeV

is combined with every lambda candidate with | minv(p, π)−mΛ0 |≤ 20MeV , corresponding
to approximately 6 σ of the nominal mass. Furthermore it is demanded that the transverse
momentum of the candidates (kaons as well as lambdas) is greater than 100 MeV. These
tracks are fitted to a common origin (primary vertex) in order to reconstruct the decay in
equation 4.23. In this analysis about 33.1 % of all possible combinations could be fitted
with the VVF routine. The χ2 distribution and the fit probability function of the VVF
fitting routine are displayed in figure 4.22. The figure 4.24 shows the invariant mass spec-
trum minv(K

0
s ,Λ

0) with and without the kaon and lambda selection criteria. It is obvious
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Figure 4.24: The invariant mass spectrum minv(K
0
s ,Λ

0) of the pentaquark candidates which
could be fitted with the VVF routine. The first plot shows the mass spectrum without any
cuts. For the second plot all kaon and lambda cuts are applied.

that the invariant mass spectrum minv(K
0
s ,Λ

0) is dominated by background and no signal
can be observed. This is not surprising since only a few events containing pentaquarks are
expected. Therefore kinematic selection criteria have to be found which strongly suppresses
the background. For this purpose the following variables are used:
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• pT(X): The transverse momentum of the reconstructed particle is demanded to be
larger than 2.25 GeV.

• prob(χ2,1): The probability function of the vertex fit χ2 should be larger than 0.02
because of the rising edge towards zero which is due to wrong K 0

s − Λ0 combinations.

• ∆ m(K0
s ): The invariant mass minv(π

+, π−) has to be within 20 MeV around the nom-
inal kaon mass: ∆m(K0

s ) ≡| minv(π
+, π−)−mK0

s
|≤ 20MeV .

• ∆ m(Λ0): The invariant mass minv(p, π) has to be within 9 MeV around the nominal
lambda mass: ∆m(Λ0) ≡| minv(p, π)−mΛ0 |≤ 9MeV .

These variables and their impact on the invariant mass spectrum minv(K
0
s ,Λ

0) are shown
in figure 4.25. In the following the selection criteria mentioned above are referred to as X-cuts.
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Figure 4.25: The left column shows the X-cut variable. The hatched area is re-
jected by the selection cuts. The middle column represents the invariant mass spectrum
minv(K

0
s ,Λ

0) when all kaon and lambda selection criteria are applied. The right col-
umn shows the impact of the corresponding cut on the invariant mass spectrum, whereas
∆m(Ks) ≡| minv(π

+, π−)−mK0
s
| and ∆m(Λ0) ≡| minv(p, π)−mΛ0 |.
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Figure 4.26: The invariant mass spectrum minv(K
0
s ,Λ

0) with A cuts applied. The bin width
chosen is 6 MeV.

Finally the figure 4.26 shows the invariant mass spectrum of data minv(K
0
s ,Λ

0) when the
track selection, kaon and lambda selection and rejection as well as the X selection criteria
introduced in this section are applied. In the following this set of selection criteria is referred
to as ’A cuts’. The bin width chosen is 6 MeV because of the expected width of the resonance
of about 10 MeV, see section 4.6.2. Figure 4.27 shows the same invariant mass distribution for
the range minv(K

0
s ,Λ

0) ∈ [1.62GeV, 1.86GeV ]. It was found that the impact parameter cut
for the lambda selection is not meaningful because it rejects too much signal. Therefore in the
following this cut is not applied but the resonance remains also if the impact parameter cut is
applied. Overlaid on the histogram in figure 4.27 is the resulting curve from a fit describing
the signal as a Gaussian function and the background as a polynomial of degree one. The χ2

value of this fit is 34.4 by 35 degree of freedom (ndf), with χ2

ndf = 0.98 indicating a successful
fit. The Gaussian function describing the signal has a mean value of 1.699 MeV and a sigma
of σ = 10.3 MeV consistent with the detector resolution, see section 4.6.2. In the following
the region within two σ of the mean value is referred to as ’signal region’. The signal (S)
to noise (N) ratio within two sigma is S

N = 57
132 = 0.43 and the signal normalized to the

number of entries (E) is S
E = 57

978 = 5.9 %6. This is a clear indication of a state decaying into
K0
s Λ0, that could possibly be interpreted as the N 0

s (udsds̄) or the Ξ0
5q(udssd̄) pentaquark.

The mean value, the width, the number of signal entries (N) and the signal to noise ratio

6For the total number of entries all pentaquark candidates with minv(K0
s ,Λ

0) ∈ [1.62GeV, 1.86GeV ] are
counted.
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(S/N) within 2 σ of the resonance found is:

m(X) = (1699 ± 3)MeV
σ(X) = (10.3 ± 2.4)MeV
N(X) ' 57
S
N (X) ' 0.43

(4.24)
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Figure 4.27: The invariant mass spectrum minv(K
0
s ,Λ

0) with A cuts applied and
minv(K

0
s ,Λ

0) ∈ [1.62GeV, 1.86GeV ]. The bin width chosen is 6 MeV. Overlaid on the
histogram is the resulting curve from a fit describing the signal as a Gaussian function

( [P1]√
2 ·π · [P3] ·wbin · exp− (x−[P2])2

2 · [P3]2 , where wbin is the bin width) and the background as a

polynomial of degree one ([P4] + [P5](x− [P2])). S/N denotes the signal to noise ration and
S denotes the number of pentaquark candidates calculated within 2σ of the mean value of
the Gaussian function.

To make sure that the signal is not caused by the selection criteria the reconstruc-
tion of the resonance X was done using only the kaons and lambdas from the sideband
(70MeV ≥ | minv(π

+, π−)−mK0
s
| ≥ 20MeV and 40MeV ≥ | minv(p, π) −mΛ0 | ≥ 9MeV ).

The resulting mass distribution is shown in figure 4.28. As expected no peak is observed.
Figure 4.29 shows again the same invariant mass distribution but this time for

minv(K
0
s ,Λ

0) ∈ [2.5GeV, 2.9GeV ]. In this mass range no peak is observed and therefore no
candidate for the heavy pentaquark T 0

s , decaying into a kaon and a lambda, was found. But
in figure 4.29 A cuts are applied which are optimized for the resonance at 1700 MeV.



56 Data Analysis

0

10

20

30

40

50

60

1.625 1.65 1.675 1.7 1.725 1.75 1.775 1.8 1.825 1.85

Entries            1647

Invariant mass minv(Ks,Λ
0) from Ks,Λ

0-sideband in GeV

N
r o

f e
nt

ri
es

 p
er

 6
 M

eV

Figure 4.28: Reconstruction of the resonance X from the K 0
s ,Λ

0-sideband:
70MeV ≥ | minv(π

+, π−)−mK0
s
| ≥ 20MeV and 40MeV ≥ | minv(p, π)−mΛ0 | ≥ 9MeV .
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Figure 4.29: The invariant mass spectrum minv(K
0
s ,Λ

0) with A cuts applied and
minv(K

0
s ,Λ

0) ∈ [2.5GeV, 2.9GeV ]. The bin width chosen is 6 MeV.
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4.6.4 Systematic studies of the events in the peak region

In this section the events making up the signal in figure 4.27 are examined further. In the fol-
lowing all events with an invariant mass minv(K

0
s ,Λ

0) ∈ [1.68 GeV,1.72 GeV] are considered.
There are totally 192 events fullfilling this criteria.

4.6.4.1 Distribution of the kaon and lambda variables

The figure 4.30 shows the distribution of the following kaon variables: The transverse angle
φ defined as the angle between the transverse momentum and the x axis of the H1 coordi-
nate system, the azimuthal angle θ, the transverse momentum pT , the z component of the
momentum vector pz, the lifetime c · τ and the vertex position of the kaon candidates. The
variables shown are well distributed and it is likely that they belong to kaons.

The figure 4.31 shows the distribution of the same variables for the lambda candidates.
Again the variables shown are well distributed and it is likely that they belong to lambdas.

The figures 4.30 and 4.31 shows that the pT -cut on the kaon and the lambda candidates
can be strengthened to pT (K0

s ) ≥ 300MeV and pT (Λ0) ≥ 1100MeV without losing any
signal. Therefore the signal to noise ratio of the resonance X could be improved to 0.49, see
figure 4.32. The normalized signal to the number of entries is 6.8 %. In the following these
pT -cuts are applied additionally to A cuts.

An other test to verify that the kaons and lambdas making up the peak in figure 4.27
are real K0

s and Λ0 is to study their mass distribution. In figure 4.33 the invariant mass
minv(π

+, π−) and minv(p, π) from the peak region are shown (hatched histogram). Since
there are only 192 events in the peak region the statistics are too low to say whether the
distribution belongs to K0

s and Λ0, respectively or not. Therefore overlaid on these histograms
are the same invariant mass distribution from the sideband of the peak7. These distribution
have a clear peak at the nominal kaon and lambda mass, respectively. If the kaons and
lambdas in the peak region are real K0

s and Λ0 then these two histograms should have the
same shape. The so called Kolmogorov test [36] is a test for the compatibility for two one
dimensional histograms and is applied on the histograms in figure 4.33. A probability (prob)
is calculated where prob near one indicates very similar histograms, and prob near zero means
that it is very unlikely that the two arose from the same parent distribution. The result from
this test is:

prob (minv(π
+, π−)

∣∣∣
peak

,minv(π
+, π−)

∣∣∣
sideband

) = 96.7 % (4.25)

prob (minv(p, π)
∣∣∣
peak

,minv(p, π)
∣∣∣
sideband

) = 75.3 % (4.26)

Therefore it is very likely that the kaons and lambdas making up the signal are true K 0
s and

Λ0.

7The sideband is considered as the region where minv(K0
s ,Λ

0) ∈ [1.62 GeV,1.68 GeV] and minv(K0
s ,Λ

0) ∈
[1.72 GeV,1.86 GeV]
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Figure 4.30: The distribution of the kaon variables for events selected by requiring
minv(K

0
s ,Λ

0) ∈ [1.68 GeV,1.72 GeV].

4.6.4.2 The decay X → K0
s Λ0 and X → K0

s Λ0

The signal is visible in the Λ0 channel (X → Λ0 K0
s ) as well as in the Λ0 channel. The

normalized signal to the number of entries is 7.4 % and 6.0 %, respectively. This is shown in
figure 4.34.



60 Data Analysis

0
2
4
6
8

10

0 2 4 6
Transverse angle φ(Λ0)

0

5

10

15

0 1 2 3
Azimutal angle θ(Λ0)

0
5

10
15
20

0 1 2 3 4 5
Transverse momentum pT(Λ0) in GeV

0
2.5

5
7.5
10

-2 0 2
z-component of momentum pz(Λ

0) in GeV

0

10

20

-10 0 10
x-component of Λ0 vertex in cm

0

5

10

15

-10 0 10
y-component of Λ0 vertex in cm

0
5

10
15
20

-10 0 10
z-component of Λ0 vertex in cm

0
5

10
15
20

0 2 4 6 8 10
cτ(Λ0) in cm

Figure 4.31: The distribution of the lambda variables for events selected by requiring
minv(K

0
s ,Λ

0) ∈ [1.68 GeV,1.72 GeV].

4.6.4.3 The influence on the resonance of different bin width

The resonance remains stable for different binning what is shown in figure 4.35 where the bin
width chosen is 5, 7, 8 and 10 MeV, respectively. The signal remains also stable over a certain
range of values for the cut variables what is confirmed in figures 4.41 and 4.44. Furthermore
multiple events in the peak region (minv(K

0
s ,Λ

0) ∈ [1.68 GeV,1.72 GeV]) could be excluded,
i.e. the entries in the region mentioned are all coming from different events.
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Figure 4.32: The invariant mass spectrum minv(K
0
s ,Λ

0) with A cuts applied. The cut on the
transverse momentum of the kaons and the lambdas was increased to pT (K0

s ) ≥ 300MeV
and pT (Λ0) ≥ 1100MeV . S/N denotes the signal to noise ration within 2σ of the Gaussian
function describing the signal and S denotes the number of events in the signal region.

4.6.4.4 The angle distribution of the resonance X

In figure 4.36 the transverse and azimuthal angle distribution of the pentaquark candidates
contributing to the signal are shown. The transverse angle is more or less uniformly dis-
tributed. This is a good sign since in the r-φ plane there is no preferred direction. In the
r-z plane the situation is different. The incoming proton has a much higher energy than the
electron. But this fact has no direct influence on the azimuthal angle distribution because
only one quark of the proton participate in the collision and the momentum fraction of the
quark is not known. Therefore no clear conclusion on the azimuthal angle distribution of the
pentaquark candidates can be made., but it seems that the resonance X is more likely pro-
duced in forward direction. In the same figure the momentum distribution of the pentaquark
candidates are shown.

4.6.4.5 Possibility of a Ω− decay

Principally there is the possibility that the peak in figure 4.32 is caused by wrong identified
Ω− decaying into K− Λ0 and the conjugate charge configuration . This decay is schematically
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Figure 4.33: The invariant mass distribution minv(π
+, π−) and minv(p, π) from the peak

events (hatched histograms) and from those events which do not contribute to the signal
(sideband).
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Figure 4.34: The invariant mass spectrum minv(K
0
s ,Λ

0) for the decay a) X → K0
s Λ0 and

b) X → K0
s Λ0. S/N denotes the signal to noise ration within 2 σ of the Gaussian function

describing the signal and S denotes the number of pentaquark candidates. For these plots the
cut on the transverse momentum of the kaon and lambda was set to 300 MeV and 1100 MeV,
respectively, see section 4.6.4.1.

represented in figure 4.37. Considering the situation that the Λ0 and the K− points almost
to the interaction point and that there is an additional π+ (poorly measured) originating
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Figure 4.35: The invariant mass spectrum minv(K
0
s ,Λ

0) with A cuts applied, shown for
different bin width of 5, 7, 8 and 10 MeV, respectively.

at the interaction point then the risk is that the K− is interpreted as a π−. This π− could
then be combined with the π+ to a K0

s . In this case the decay shown in figure 4.37 would be
interpreted as a decay of the resonance X. To make sure that the signal is not caused by this
wrong identification the invariant mass minv(K

−,Λ0) is calculated. In figure 4.38 the invari-
ant mass minv(K

−,Λ0) for the events which contribute to the signal (hatched area) is shown.
Additionally the same distribution for the sideband events is shown. In these distribution no
peak at the nominal omega mass of 1.672 GeV is observed, making it unlikely that the signal
is caused by misidentified omega’s. This is also confirmed by figure 4.39 where the invariant
mass minv(K

0
s ,Λ

0) is shown for the condition that minv(K
−,Λ0) /∈ [1.666 GeV,1.678 GeV]

(according to ∼ 2σ of the Ω resonance). The peak representing the resonance X remains.
The normalized signal to the number of events is 6.4 % in accordance with figure 4.32. Con-
sequently it is very unlikely that the signal is due to misidentified omega’s.

4.6.4.6 The Q2 dependence of the signal

In this paragraph the dependence from the signal on the Q2 value is examined. In figure
4.40 the invariant mass distribution minv(K

0
s ,Λ

0) for three different Q2-cuts is shown. The
Q2 ranges examined are 1GeV 2, 10GeV 2 and 20GeV 2. The signal remains visible for all
Q2 ranges examined except for Q2 ≤ 1GeV 2 where there is not enough statistics and the
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Figure 4.36: The distribution of some variables of the resonance X. For the white histograms
all events with an invariant mass minv(K

0
s ,Λ

0) ∈ [1.68 GeV,1.72 GeV] are used and the
hatched histograms shows the distribution from the background. Shown are the transverse
and the azimuthal angle distribution and the transverse momentum pT and the z component
of the momentum pz.

normalized signal to the number of entries lies between 6 % and 7 % compatible with those
from figure 4.32. So it is possible that the resonance X analyzed in this thesis is not produced
in photo production but only in deep inelastic scattering. But no clear conclusion can be
made because of the low statistics for Q2 ≤ 1GeV 2.
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Figure 4.37: Schematically representation of the Ω− decay. IP denotes the interaction point.
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Figure 4.39: The invariant mass distribution minv(K
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0) without those events with
minv(K
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nal to noise ration within 2 σ of the Gaussian function describing the signal and S denotes
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0) in dependence of the Q2 ranges.
S/N denotes the signal to noise ratio within 2σ of the Gaussian function describing the signal
and S denotes the number of events in the signal region.
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4.6.4.7 The X mass spectrum for different selection criteria

In this subsection it is shown that the resonance X remains stable for different selection
criteria. Figure 4.41 shows the resonance X for different pT cuts. For the first plot it is
demanded that pT (X) ≥ 1.75 GeV, pT (Λ0) ≥ 0.6 GeV and pT (K0

s ) ≥ 0.2 GeV and for the
second plot pT (X) ≥ 2.25 GeV, pT (Λ0) ≥ 0.2 GeV and pT (K0

s ) ≥ 0.1 GeV. The resonance X
remains visible for these different pT cuts and also the width is consistent within the errors
with the width observed in figure 4.27 and 4.32. For the selection criteria applied for plot
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Figure 4.41: The resonance X for different pT cuts: a) high pT (X) and b) low pT (X).

b) in figure 4.41, the invariant mass and the transverse momentum of the kaon and lambda
candidates from the signal region and from the sideband are shown in figure 4.42 and 4.43,
confirming again that the particles used for the reconstruction of the resonance X are true
kaons and lambdas.

Figure 4.44 shows the resonance X for a narrower kaon and lambda mass window:
| minv(π

+, π−)−mK0
s
|≤ 15MeV and | minv(p, π)−mΛ0 |≤ 7MeV according to approxi-

mately 3σ of the nominal kaon and lambda mass, respectively. The resonance remains stable
and the width is consistent with the width observed before.

4.6.4.8 The subtriggers

Since the electron proton collision rate is about 10 MHz and the H1 recording bandwidth is
limited to 10 Hz, interesting events have to be filtered out. This is done by the H1 trigger
system which is divided into 4 levels: L1, L2, L3 and L4. L1 combines the trigger informa-
tion (trigger elements) provided by the different subdetectors logically to subtriggers. More
information on the trigger system can be found in [38]. In figure 4.45 the distribution of the
different subtriggers for the signal region and for the sideband are shown. The subtriggers for
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Figure 4.42: The invariant mass minv(π
+, π−) and minv(p, π) distribution from the signal

region (hatched histogram) and from the sideband for weaker pT cuts (see first plot in figure
4.41).
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4.41).

the signal region and for the sideband are equally distributed what is a good indication. The
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Figure 4.44: The resonance X for a different kaon and lambda mass window:
(| minv(π

+, π−)−mK0
s
|≤ 15MeV , | minv(p, π)−mΛ0 |≤ 7MeV ).

main subtrigger is 71 which is LAr BR&&DCRph Tc&&zVtx sig≥18 [9]. This subtrigger has
an prescale factor of one and an integrated luminosity for the data of 1999 and 2000 of L =
53’454 nb−1.

8Requiring energy in the liquid argon calorimeter, three central tracks and a significant vertex along the z
coordinate.



4.6 Reconstruction of the resonance X 71

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Entries             766

Actual subtrigger bits for signal

0

100

200

300

400

500

0 20 40 60 80 100 120

Entries            3014

Actual subtrigger bits for sideband

Figure 4.45: Actual subtrigger bits for signal region and sideband



72 Data Analysis

The figure 4.46 shows the reconstructed resonance X for those events where the subtrigger
71 was active. The peak remains with a signal to noise ratio of 0.32 and approximately 44
signal events.
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Figure 4.46: The invariant mass spectrum minv(K
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0) for the events triggered by the
subtrigger 71.

4.6.4.9 The time distribution of the signal

In figure 4.47 the time distribution (run numbers) of the events in the signal region is shown.
All except of eight events have different run numbers and the events with the same run
number have different event numbers. Therefore it is confirmed that all entries in the signal
region are coming from different events.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2500 2550 2600 2650 2700 2750
x 10

2

Distribution of the run numbers for the signal region

Figure 4.47: The distribution of the run numbers for the events in the signal region.
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4.6.5 Comparison to the STAR measurement

As mentioned in section 1 the STAR collaboration examined the invariant mass distribution
minv(K

0
s ,Λ

0) using the RHIC collider. Their result is shown in figure 4.48. They indicated
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Figure 4.48: The invariant mass distribution minv(K
0
s ,Λ

0) measured by the STAR collabo-
ration at RHIC [8] (hatched area) together with the estimated background (line)

the observation of a peak at a mass of 1733.6 ± 0.5(stat) ± 5(syst) MeV and a width consistent
with the detector resolution of about 6 MeV. The signal found in this analysis is more or less
consistent with the result of the STAR collaboration. The work of the STAR collaboration
is still in progress and their new data taken in the year 2004 will enhance the statistics by a
factor of about 10-15.

4.6.6 dE/dx improved lambda selection

In this section the DDXMOD 9 [37] is used to improve the lambda selection. DDXMOD is a
complete package to use the dEdx measurement of the CJC. For every track a likelihood value
is calculated, which specifies a probability that the examined particle is a proton, a pion or a
kaon. For the positive charged daughter particle in the Λ0 decay and for the negative charged

daughter particle in the Λ
0

decay it is demanded that the normalized likelihood value to be
a proton is greater than 10%. Figure 4.49 shows the dEdx value as a function of the absolute
momentum of the particle. The two bands visible represent the pions and the protons. The
first plot shows the dEdx distribution when all lambda selection criteria are applied, and for
the second plot it is demanded that the normalized likelihood value for the proton is greater
than 10 %. For both plots the cut on the transverse momentum of the lambda was weakened
to pT ≥ 300 MeV.

9developed by Jörn Steinhart in 1997 and 1998
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Figure 4.49: dEdx distribution

Figure 4.50 shows the impact of the dEdx improvement on the invariant mass spectrum
minv(p, π). The left plot shows the lambda mass spectrum when all lambda cuts are applied
and for the right plot it is demanded that the normalized likelihood value for the proton is
greater than 10 %. The signal to noise ratio S

N could be improved from roughly 2 to 3 while
only about 900 signal events were lost.
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Figure 4.50: The invariant mass distribution minv(p, π) with and without dEdx improvement.
Overlaid on the histograms are the resulting curves from a fit describing the signal as a
superposition of two Gaussians and the background as a quadratic polynomial.
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In figure 4.51 the invariant mass distribution minv(K
0
s ,Λ

0) for the improved dEdx lambda
selection is shown. No signal events are lost and the signal to noise ratio remains stable within
the errors at about 0.5 as expected.

0

5

10

15

20

25

30

35

40

1.625 1.65 1.675 1.7 1.725 1.75 1.775 1.8 1.825 1.85

Entries             902
  29.23    /    35

P1   72.22
P2   1.700
P3  0.9993E-02
P4   19.14
P5   39.88

S = 63

S/N = 0.49

Invariant mass minv(Ks,Λ
0) with all cuts L(p)>0.1

N
r o

f e
nt

ri
es

 p
er

 6
 M

eV

Figure 4.51: The invariant mass minv(K
0
s ,Λ

0) with improved dEdx-lambda selection
(L(proton) ≥ 10 %).

4.6.7 Interpretation of the resonance X

The possible interpretation of the resonance X are:

• The pentaquark N 0
s (udsds)

• The pentaquark Ξ0
5q(usdsd)

• The excited baryons Ξ0
3q(1690, 1820) with quark content uss

• The excited baryons N(1650, 1675, 1700, 1710, 1720) with quark content udd.

The mass of the pentaquark N 0
s is expected to lie around 1700 MeV (see section 3.1.1) and

the width is expected to be small. This allows the interpretation of the resonance X as the
pentaquark N 0

s . It is unlikely that the observed resonance X is the Ξ0
5q pentaquark because

of the mass observed by the NA49 collaboration of mexp,NA49(Ξ0
5q) ' 1.85 GeV, see [6]. The

interpretation of the resonance X as the excited baryon states N(1650,1675,1700,1710,1720)
is unlikely too because these states have all a width of more than approximately 100 MeV and
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the excited baryon Ξ0
3q(1820) is disfavored because of the large mass. But the excited baryon

Ξ0
3q(1690) is a hot candidate for the resonance X because of the mass of 1690 MeV and the

width of less than 30 MeV. Therefore one may conclude that the resonance X is either the
excited baryon Ξ0

3q(1690) or the pentaquark N 0
s (udsds). In the following efforts are made to

distinguish between these two possible interpretations.
Assuming that the resonance X is the excited baryon Ξ0

3q(1690) and the decay observed
in this analysis is

Ξ0
3q → K0

s Λ0 (4.27)

and the charge conjugated channel. In this case the decay of the negatively charged baryon
Ξ−3q(1690) with quark content dss decaying into K− Λ0

Ξ−3q → K− Λ0 (4.28)

and the charge conjugated channel should also be visible. Consequently in this interpretation
a signal in the invariant mass spectrum K− Λ0 and K+ Λ0 at about 1700 MeV is expected.

On the other hand if the resonance X is the pentaquark N 0
s (udsds) and the decay observed

in this analysis is
N0
s → K0

s Λ0 (4.29)

and the charge conjugated channel, then one could expect that the charged partner of the
N0
s , the N+

s , with quark content uduss is also visible. This state would decay into K+ Λ0

N+
s → K+ Λ0 (4.30)

and the charge conjugated channel. Therefore in this interpretation a signal in the invariant
mass spectrum K+ Λ0 and K− Λ0 at about 1700 MeV is expected.

Unfortunately almost no time was left to investigate these invariant mass spectra. But
at a first look no peak has been observed in both mass spectra (minv(K

−,Λ0),minv(K
+,Λ0)

and minv(K
+,Λ0),minv(K

−,Λ0)), see figure 4.52, making it so far impossible to distinguish
between the two interpretations mentioned above. An other problem is that no candidate for
the pentaquark N+

s is found up to now. Therefore it is possible that this particle does not
exist.

4.6.8 Estimation of the production cross section for the resonance X

The production cross section for the resonance X is estimated in the kinematic range10

Q2 ≥ 1GeV 2

| η(X) | ≤ 1

pT (X) ≥ 2.25GeV. (4.31)

This cross section is given by:

σvis(ep→ e′X) · BR(X → K0
s Λ0) =

Nvis

L , (4.32)

10For the lepton inelasticity no explicit restriction was made but the y values lie between 0.05 and 0.95.
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Figure 4.52: The invariant mass spectraminv(K
− Λ0,K+ Λ0) andminv(K

+ Λ0,K− Λ0). L(K)
denotes the likelihood value obtained from the DDXMOD that the particle is a kaon.

where Nvis denotes the number of produced candidates for the resonance X in the visible
kinematic range defined in equation 4.31 and L denotes the integrated luminosity for the
subtrigger 71, L = 53.45 pb−1. Nvis is determined by

Nvis =
Ndata
rec

ε · εTrig · BR(K0
s → π+ π−) · BR(Λ0 → p π)

, (4.33)



78 Data Analysis

where Ndata
rec denotes the number of reconstructed data events in the analyzed decay channel,

εTrig is the efficiency of the subtrigger 71 and ε is the reconstruction efficiency without the
trigger efficiency. The latter is determined using the Monte Carlo simulated data. Under the
saaumption that the simulated data sample has the same statistical distribution as the real
data the efficiency is:

ε ' εMC =
NMC
rec

NMC
gen

= 0.8 %, (4.34)

where N gen
MC denotes the number of generated X events in the kinematic range examined which

decay through the channel analyzed in this thesis (see equation 4.1-4.3) and N rec
MC denotes the

number of reconstructed Monte Carlo events. The problem is that the production process
of the resonance X and hence the kinematical distribution in pT , η etc. is unknown and
therefore a fixed pT value of 2.75 GeV is used, see section 4.6.2. The trigger efficiency of the
subtrigger 71 is expected to be around 90 %:

εTrig = (90± 10) % (4.35)

This is also in agreement with the trigger efficiency determined by J. Gassner [40]. The error
of the production cross section is determined using the well known formula for a composed
quantity X(a,b,. . . ) depending on the variables a,b,. . . :

∆(X) =

√(
∂ X

∂ a
· ∆(a)

)2

+

(
∂ X

∂ b
· ∆(b)

)2

+ . . . (4.36)

The values used for the estimation of the production cross section are listed in table 4.2. The

quantity value error

Ndata
rec 51 15

ε 0.0082 0.0005

εTrig 0.9 0.1

BR(K0
s → π+ π−) 0.686 0.003

BR(Λ0 → p π) 0.639 0.005

Table 4.2: The values used for the estimation of the production cross section.

resulting production cross section with error is:

σvis(ep→ e′X) · BR(X → K0
s Λ0) = (302 ± 97) pb. (4.37)

This value is meant to be rather a first order of magnitude estimation, than a precisely
determined number, and thus should be interpreted with care.
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Conclusions

In this thesis the invariant mass spectrum minv(K
0
s ,Λ

0) was studied using the H1 data taken
in the years 1999 and 2000. A resonance X could be observed with a mass and a width of:

m(X) = (1699 ± 3)MeV

σ(X) = (10.3 ± 2.4)MeV.

The width of the resonance is consistent with the detector resolution. This is a clear indication
of a state decaying into K0

s Λ0, that could possibly be interpreted as the flavor antidecuplet
member N 0

s (udsds̄) with hypercharge Y = 1 and third component of the isospin vector
I3 = −1

2 or the excited baryon Ξ0(1690). But a further analysis has to confirm this result.
The weak decay T 0

s (udusc)→ K0
s Λ0 with m(T 0

s ) ≈ 2580 MeV could not be observed.
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